
Scientific computing in R

Karline Soetaert and Filip Meysman

Royal Netherlands Institute of Sea Research (NIOZ)

Yerseke, The Netherlands

May 2013

Abstract

The principal goal of these lecture notes is to learn how to produce clever R scripts.
These R scripts should support and facilitate your research activities, and more specifically,
they should help with the computational aspects of your scientific work.

R (R Development Core Team 2011) is the open-source version of the language S. It
is best known as a software environment that performs statistical analysis and graphics.
However, R is so much more: it is a high-level language in which one can perform complex
calculations, implement new methods, and make high-quality figures.

R has high-level functions to operate on matrices, perform numerical integration, ad-
vanced statistics,... which are easily triggered and which make it ideally suited for data-
visualization, statistical analysis and mathematical modeling.

It is the aim of these lecture notes to make you acquainted with the R language. Part
of these lecture notes are based on a book (Soetaert and Herman 2009) about ecological
modelling in which R is extensively used for developing, solving and applying and models.

Keywords: Variables, Functions, Figures, Interpolation, Fitting, Roots, Ordinary differential
equations, R.

1. Getting started in R

R programming basically involves two activities:

� the development of an R script. First you need to write down a suitable sequence of R
commands, i.e. you tell the computer what it should do. To make sure that the computer
understands these R commands, they should follow the syntax of the R programming
language.

� the execution of the R script. Next the computer will execute the R commands line by
line as specified in the R script, i.e. the computer will do what you have told it to do.

Because of this two-step process, you will typically use two software programs when working
with R. Firstly, the editor is the program in which you write, edit and save your R scripts.
Secondly, the R console is the program that effectively executes the commands in the script.
The purpose of this first chapter is to get your R installation up and running, and at the same
time, walk you through its most basic features.

2 Scientific computing in R

1.1. The R console

The R console provides an integrated software environment for data manipulation, calculation
and graphical display. Technically speaking, the R programming language is an interpreted
language, where the R console acts as a command line interpreter. The R console is developed
and maintained as an open source project (R Development Core Team 2011). The R console
software (referred to as the “base distribution” in R terminology) is freely downloadable from
the CRAN website:

http://cran.r-project.org/

CRAN is the acronym of“Comprehensive R Archive Network”and is a network of servers that
hosts the code and documentation for R . On the CRAN site, go to Download and Install

R and choose the link to your operating system (Windows, MacOSX or Linux).

This document assumes that you are operating under Windows. However, most of the material
presented here is independent of the operating system. Accordingly, MacOSX or Linux users
who have their R system running, will be able to directly use the material. To install R
under Windows, click on the base link and subsequently Download R 2.15.1 for Windows

(or some higher version of R).

On this same CRAN website, you will also find various accompanying documentation and
other information. It is worthwhile to check out what’s available. For example, the R for

Windows FAQ is very helpful. In addition, there are many good introductions to programming
in R that are available at the CRAN website. Our favorite is the R introduction by Petra Kuh-
nert and Bill Venables (Kuhnert and Venables 2005). Note however that this “introduction”
contains more than 300 pages!

1.2. The R editor

When writing R scripts, it is most productive to do this in a special software application,
called an integrated development environment (IDE). An IDE will provide you with a set of
useful coding tools to help you develop R scripts. There are different free IDEs around on
the internet, some of which are specific for R (e.g., Tinn-R), while others can also be used
for other programming languages (e.g., Eclipse, Emacs). Recently, a new IDE has been made
available, called RStudio, specifically designed for R. We recommend it because of it has an
intuitive interface and helpful coding tools. It can be freely downloaded from the website:

http://rstudio.org/

If you first install the R base distribution, and subsequently RStudio, the latter will auto-
matically have a proper connection with R (see the appendix for what to do if this does not
happen).

If you launch RStudio, then four panels will appear - a screenshot is given below in figure
1. The R console is immediately started in the lower left panel. A script file can be opened
in the editor panel on the top left. Note the colour coding (e.g. green = text strings, blue
= reserved words). The upper right panel contains the workspace, which allows to see the
content of the various R objects that you have defined. The lower right panel provides access
to the file system and extension packages, and shows figures and help.

http://cran.r-project.org/
http://rstudio.org/

Karline Soetaert and Filip Meysman 3

Figure 1: Screenshot of Rstudio, a freely downloadable development environment for R.

1.3. Installing extension packages

An R package essentially contains a set of functions that can perform certain tasks. When
downloading R , one only installs the base distribution, which comes with a limited set of pre-
installed packages. For specific applications, you will need to download and install additional
packages. For this course, we will need:

� deSolve. Performs integration of differential equations (Soetaert, Petzoldt, and Setzer
2010).

� rootSolve. Finds the root of equations (Soetaert 2009).

� scatterplot3d. For 3-D graphics. (Ligges and Machler 2003)

� AquaEnv. Aquatic chemistry. (Hofmann, Soetaert, Middelburg, and Meysman 2010)

� seacarb. Aquatic chemistry. (Lavigne, Gattuso, Epitalon, Gentili, Hofmann, Orr, Proye,
and Soetaert 2010)

� marelac. Functions and constants from the marine and lacustrine sciences (Soetaert,
Petzoldt, and Meysman 2009).

Packages can be downloaded from the CRAN website. In RStudio, downloading packages
can be done in the Packages menu of the lower right panel. Select Install package(s) and

4 Scientific computing in R

type the name of the package. If you install package marelacTeaching then all other packages
will be automatically installed as well.

Once installed, you can generate a list of all available packages, or load a package, or obtain
the contents of a package by the following commands:

library()

library(deSolve)

library(help = deSolve)

help(package = deSolve)

Karline Soetaert and Filip Meysman 5

2. First steps into R programming

In this chapter, we assume that you have little experience with programming. So we will start
from the very basics and illustrate some basal programming techniques in R. More advanced
programmers can quickly ”browse” this chapter and move on to the next one. Note however
that some features in R are unconventional as compared to other languages. If you have
written software in other languages, the website R programming for those coming from other
languages located at

http://www.johndcook.com/R_language_for_programmers.html

could be a useful resource. It gives a concise overview of those aspects in which R differs from
other languages.

2.1. Command line execution in the console

The most basic way to excute a given R command is to simply type this command directly
into the R console (the lower left panel in RStudio). In this case, one does not yet use the
script editor (the upper left panel in RStudio). Let’s try this with a silly example. First type
the expression 4*2 after the so-called prompt (>) and subsequently press Enter. This is what
will appear:

> 4*2

[1] 8

This illustrates how the execution of instructions in the R console essentially works by means
of a question-and-answer model. One first enters the instruction after the prompt (>). Sub-
sequently the computer carries out the instruction after pressing Enter. The answer from
the computer is written on the next line. The [1] in front of the result is the standard way
that R prints numbers and vectors. For the moment, we should not bother too much about
this [1]. Later, when we work with vectors and matrices, the meaning of this notation will
become clear.

The above example consists of a very simple arithmetic expression. Obviously, more complex
expressions can be constructed using built-in mathematical functions like sqrt() (square
root), exp() (exponential) and log10() (base 10 logarithm). Try:

> (2*sqrt(25) + log10(100)) * exp(-2)/2

[1] 0.8120117

In essence, we are using the R console here as a powerful scientific calculator. The crucial
point is that we should use the proper R syntax when coding our mathematical expressions.
For novice programmers, the struggle with the R syntax can be frustrating, but this is part
of the learning process of any programming language.

Tips and tricks:

http://www.johndcook.com/R_language_for_programmers.html

6 Scientific computing in R

The <UP> and <DOWN> arrows on your keyboard can be used to navigate through previ-
ously typed sentences in the console panel. This way, it is easy to recycle earlier commands and
implement small modifications (without the need to type the whole command from scratch).

2.2. Working with symbolic variables

Like any other programming language, one can use symbolic variables in R. The use of sym-
bolic variables allows one to store intermediate results in the memory of the computer. This
technique is one of the basic pillars of programming. Type the following:

> A <- 1

The two characters “<-” should be read as one arrow symbol representing the assignment
operator. The command A <- 1 thus creates a symbolic variable with the name A and assigns
the value 1 to this variable. Note that R also allows to use “=” as the assigment operator, but
this is not as flexible as “<-” (and therefore not recommended).

Note that the assignment has no immediate visible result. The instruction only creates the
variable A, but does not print its content to the console. If we want to display the value A on
the screen, we need to explicitly ask R to do so. This can be done in three ways: either by
typing A on a new command line,

> A

[1] 1

by putting round brackets around the original expression,

> (A <- 1)

[1] 1

or by using the print() command.

> print(A)

[1] 1

The advantage of using symbolic variables is enormous. From now on, the object A has the
value 1, and we can use this object in subsequent commands, such as:

> exp(2*A + 0.5)

[1] 12.18249

Karline Soetaert and Filip Meysman 7

Names of variables can be chosen quite freely in R. They can consist of letters, digits and the
dot symbol. Beware that some single letters (e.g. c, F, T) and names (e.g. seq, rnorm) have
already been claimed by the R system. To avoid confusion, it is not a good idea to use these
as variable names (although it is allowed and mostly it will not cause trouble). Similarly,
names may not start with a digit, while names starting with a dot are special and should be
avoided. The dot symbol is however often used to construct a composite name. For example
the variable O2.exp1 could represent the oxygen (“O2”) concentration as measured in the first
experiment (“exp1”).

A final important note is that names are case sensitive! To see this, try:

> var <- 1; Var <- 2

> var + Var

[1] 3

The terms Var and var are treated as separate variables. Mistakes with capital and small
letters are therefore common (watch out!). In the above code we have used a semicolon “;” to
separate two R statements.

Note: In an R script, it is sometimes difficult to see the difference between the letter “l” (from
“leo”), the capital letter“I”(from“Iris”) and the number“1”(one), and also between the capital
letter “O” (from “Octopus”) the and number “0” (zero).

2.3. File management

During programming, the number of files (e.g. different versions of scripts) will rapidly mount,
and so, it is important to stick to a proper “file hygiene”. It is a good idea to create a separate
file directory on your computer system for each R project. This makes it easy to save your
work and retrieve it in later sessions.

R always uses a so-called working directory where it reads and writes files. When opening an
R session, this working directory is automatically set (see Tools:Options:General:Initial

working directory in Rstudio). This default value is typically not the desired project di-
rectory. Therefore, at the start of your R session, it is very convenient to have the working
directory set correctly to the proper project directory.

This can be done in a number of ways. A first option is to select the project directory
in the Files panel of Rstudio (the lower right panel), and then use More:Set as working

directory button on the toolbar. Alternatively, one can also Tools:Set working directory

from the menu in the editor panel. As a third option, one can also set the working directory
directly in the Console (i.e. without using the menus in Rstudio). The command

getwd()

will give you the value of the current working directory. You can change this directory to a
new value via

setwd("Path_to_MyProjectDirectory")

8 Scientific computing in R

Important note: Pathnames in R are written with forward slashes (“/”) , although in Windows,
backslashes, (\), are used. For example, the working directory could be set as:

setwd("C:/R code/MyProjectDirectory")

2.4. Objects and the workspace

All the entities that R creates and manipulates are treated as objects, where each object has
a given name and a certain content. The variable A as introduced above is an example of
such an object. Whenever an object is created during an R session, its name and its content
are stored in the memory of the computer. The collection of all objects currently stored is
called the workspace. To display the names of all the objects that are currently stored in the
workspace, one can use the function ls() (abbreviation for “list”)

ls()

The value of all user-defined objects are displayed in the upper right panel of Rstudio under
the tab Workspace. To remove one or more objects from the workspace, you can use the
function rm() (abbreviation for “remove”). The following will remove the variable A from the
workspace (check this in the upper right panel)

rm(A)

The objects created during an R session can be stored permanently in a file with the extension
.Rdata for use in future R sessions.

For example, we can save the variables x and y for later use in a file named Objectfile.Rdata.

x <- 1

y <- 2

save(x, y, file = "Objectfile.Rdata")

This file will be saved in the working directory (check ist appearance in the Files panel). We
can now remove these two variables from the workspace via the remove command

rm(x, y)

If you check the content of the workspace with ls(), or look into the check this in the upper
right workspace panel of Rstudio, you can verify that x and y are no longer there. At a later
time, we can reload these two variables again into the workspace via the load function

load (file = "Objectfile.Rdata")

Karline Soetaert and Filip Meysman 9

If we check the contents of the workspace with ls(), it will show that the variables x and
y are again present. This combination of the save and reload commands provides a handy
mechanism to be able to re-use the (intermediate) results of the present analysis in later R
sessions.

At the end of each R session you are given the opportunity to save all the currently available
objects. If you indicate that you want to do this, the objects are written to a nameless file
called .RData in the working directory, and the command lines used in the session are saved
to a similar file called .Rhistory. When R is started at later time it will reload this saved
workspace and command history.

2.5. Working with scripts

In addition to simple command line execution, there is a second, more powerful way of using
R. Suitable sequences of R commands can be put together in a so-called R script and saved
in a file (“filename.R”) for later re-use. This way, instructions do not have to be typed in the
console over and over again. Scripts are most easily developed in a specifically dedicated IDE
like RStudio.

Open a new, blank file in RStudio (go to menu File:NewR script). A new window will pop
up in the upper left panel. Then type the following in this new panel (not in the console):

A <- 1

B <- 2

X <- A + B

print(X)

Save this file to the workingdirectory on your file system (go to menu File, select Save as,
and type the name you’d like to give to the file, for example, MyFirstFile.R).

This is your first R script, congratulations! But what does it mean? The first two lines
initialize the variables A and B. The command X <- A + B creates a third variable, X, which
stores the sum of A and B. The last line prints the content of X within the console.

To execute these 4 statements, they need to be submitted to the R console. Submitting
implies that the R console will execute the separate commands in the script, one line after
the other. Scripts can be submitted in a number of ways in RStudio. To submit a limited set
of commands, one first selects these commands in the editor, and then click the Run button
in the editor panel. To execute the previously selected code, press the Re-Run button. To
execute all commands in the entire script file, click the Source button in the editor panel.

Throughout these notes, the following conventions are used. R statements in a script file lack
the prompt > and are written as:

X <- A + B

X

However, when submitted to the R console, these same statements are always preceded by a
prompt >:

> X <- A + B

> X

10 Scientific computing in R

The resulting output is calculated by the console and is represented in the console window as:

[1] 3

A powerful and often used programming technique is the re-use of the variables. In the above
example, the sum of A and B is stored in a newly created variable X. However one could also
use a variable name that is already in use:

> A <- 1

> B <- 2

> A <- A + B

> A

[1] 3

When the value of A + B is calculated, it is again assigned to the variable A. The old value
of A (= 1) is overwritten by the sum of A and B (= 3). Why would one consider such re-
use of variables? Instead of three variables as above (A, B, X), the code now only uses
two variables (A, B) and so less computer memory is taken up. For a simple example like
this, such memory considerations are not important. However, when writing large programs,
proper memory management can become an issue.

2.6. Errors and warnings

When a command is not correctly formulated according to R syntax, the computer will not
execute it. For example if you use ln rather than log for the natural logarithm, the computer
will issue an error message. This message will give you a (sometimes vague) clue of what the
cause of the error could be.

>ln(10)

Error: could not find function "ln"

Now let’s make another deliberate error by typing:

> log10(100

+

We forgot to add the closing bracket, and hence the expression is not complete. When we
type Enter R has changed the “>” prompt to a “+” prompt, meaning that it expects more,
i.e. it indicates that the previous command was not yet finished. To still get the result one
can type the missing bracket “)” and Enter. Or one can press the Esc key to cancel the
calculation.

If a sentence on one line is syntaxically correct, R will execute it, even if it is your intention
that it proceeds on the next line. Suppose you want to calculate 3 + cos(π)−

√
(5). We can

write this statement on two lines as part of a script in the editor and submit it to the console.
The result depend on how we do this. For instance, if we write the following:

Karline Soetaert and Filip Meysman 11

3 + cos(pi)

- sqrt(5)

then this will be erroneously interpreted as two separate commands.

> 3 + cos(pi)

[1] 2

> - sqrt(5)

[1] -2.236068

The separate values of (3 + cos(π)) and −
√

5 will be printed (which is not intended). In
contrast, if one writes:

3 + cos(pi) -

sqrt(5)

a different output will appear in the console.

> 3 + cos(pi) -

sqrt(5)

[1] -0.236068

R will interpret these two lines now as one single command and print the value of 3+cos(π)−√
5. Because the expression on the first line was not syntaxically finished, R has (correctly)

assumed that it continued on the next line. Note the change in R-prompt from “>” to “+”.

Tips and tricks:

This example shows that you should be careful when you want to split a complex statement
over several lines! These errors are very difficult to trace, so it is best to avoid them.

2.7. Getting help

In order to use a specific function, one should know how to use it. A great advantage of
R is that it has an extensive built-in help facility. To get more information on any specific
function, for example seq(), simply type

?seq

The longer alternative is help(seq). After pressing Enter a HTML help file will pop up (in
Rstudio in the lower right panel Plots). This panel explains you what this function does and
how to use it. In the case of the seq command, the help file explains how to create a sequence
of numbers. This help facility is a very powerful feature of R: make ample use of it!

For special characters, the argument must be enclosed in quotes, making it a ”character string”.
This is also necessary for a few words with syntactic meaning, like if, for and function.

12 Scientific computing in R

help("[")

If you don’t know the exact name of the function, you can search for a keyword. The
help.search command (alternative ??) allows searching for keywords. For example,

??seq

will list all occurrences of the word seq in the R documentation.

Most of the help files include examples. You can run all of them by using the command
example. For instance, typing into the console window:

> example(seq)

will run all the examples from the seq help file. Alternatively, you may select one example,
copy it to the clipboard (ctrl-C for windows users) and then paste it (ctrl-V) in the console
window.

In addition, the R base installation and many R packages come with demonstration material.
Typing:

> demo()

will give a list of available demonstrations in the base installation.

> demo(graphics)

will demonstrate some simple graphical capabilities. Finally, many R packages come with
so-called package “vignettes”. These are manuals that explain how to work with the package.
For instance, typing

> vignette("deSolve")

will open a (technical) manual about how to use R-package deSolve.

Tips and tricks:

The best help is often provided by the very active mailing list on the internet. If you have a
specific problem, just type R: <problem> on your search engine (e.g. Google). Chances are
that someone has already encountered the problem and solved it.

2.8. A quick glance on things to come...

Open the file “QuickIntro.R” into the editor panel. This script illustrates how R can perform
a rather sophistaced task with only a few statements. The script plots a linear regression line
on a data graph, where the data are from an experiment which has lasted for 10 hours. At
different time points we have measured the O2 concentration in a closed incubation chamber.

Karline Soetaert and Filip Meysman 13

We can execute the script in a stepwise fashion by selecting blocks of commands and using
the Run button on top of the editor panel. Right now, we only briefly discuss what happens in
the script. The separate commands will be dicussed in more detail in later chapters. Execute
the first line.

The "seq" function creates a sequential vector

Nothing happens. This is because this line starts with # and represents a comment, which
is ignored during execution. As soon as the symbol # appears, anything to the right on the
same line is ignored.

Let’s move on to the next two lines. The seq() function creates a sequential vector that
harbours the regular time points at which data were collected (expressed in units of hours).
The from = , to = and by = are so-called arguments to the function, which need to be
specified. Here we create a series of numbers starting from 0 to 10, and spaced by 1. The
vector is subsequently displayed.

The "seq" function creates a sequential vector

time.vector <- seq(from = 0, to = 10, by = 1)

time.vector

[1] 0 1 2 3 4 5 6 7 8 9 10

The oxygen data do not follow a regular sequence and are introduced in a different way. The
concatenation function c() assembles a vector out of individual numbers:

conc.vector <- c(270, 250, 232, 209, 193, 176, 159, 145, 130, 124, 113)

conc.vector

[1] 270 250 232 209 193 176 159 145 130 124 113

Both c() and seq() are built-in functions in R (later you will learn how to make your own
functions). Now test what happens if you execute:

Making a first plot

plot(time.vector, conc.vector)

The plot command creates a pop-up graphics window in which the experimental data are
plotted. The result can be seen in figure 2A. This graph has a rather primitive look. We
can make it a little bit more professional by adding a title and labels to the axes. The plot

statement is changed into:

plot(time.vector, conc.vector, ylim = c(0, 300), xlab = "Time [hr]",

ylab = "O2 concentration [micromol L-1]", main = "Data O2 incubation")

14 Scientific computing in R

●

●

●

●

●

●

●

●

●

●

●

0 2 4 6 8 10

15
0

20
0

25
0

time.vector

co
nc

.v
ec

to
r

A

●

●

●

●

●

●

●

●

●
●

●

0 2 4 6 8 10

0
50

10
0

15
0

20
0

25
0

30
0

Data O2 incubation

Time [hr]
O

2
co

nc
en

tr
at

io
n

[m
ic

ro
m

ol
 L

−
1]

B

Figure 2: A. Function plot using default arguments. B. A nicer plot, overruling the default
arguments of the plot function. See text for explanation.

At this point the arguments in the plot function may not mean much. We just include it
at this stage to show that by a single (high-level) instruction one can obtain a quite complex
response (the creation of a graph). In a later chapter we will go into more details about the
graphics in R .

Now test what happens if you execute the rest of the code:

Adding a trendline through first eight data points

index <- 1:8

model.fit <- lm(conc.vector[index] ~ time.vector[index]) # lm = linear model

abline(model.fit, lwd = 2, col = "blue")

This will fit a trendline through the first eight data points and produce the final graph. Try
to fit a line through 6 or 10 points, and replot the graph.

Karline Soetaert and Filip Meysman 15

3. Numbers and vectors

The basic data structure of R is the numeric vector, which is an ordered set of numbers. R
calculates as easily with vectors (and matrices and arrays) as with single numbers. Learning
how to create and manupulate these variables is essential if you want the make good use of
the R software.

3.1. Working with single numbers

R can work with integer, real and complex numbers. Unlike other programming languages
R has no single precision data type. All real numbers are stored in double precision format.
So when initializing numeric variables, the associated values will always be stored in double
precision. For most purposes, you need not be concerned too much how the numbers are
actually stored.

> (X <- 3)

[1] 3

In this statement, the variable value X is created and assigned the value of 3 (which is stored
internally in a double precision format). The arrow “<-” is the assignment operator, and the
brackets “()” denote that the result should be displayed on the screen (as detailed above).

A peculiar feature of the R language is that it has no provision for scalars (that is single
numbers), like other programming languages. So R represents a single number as a vector of
length one. This is why the [1] stands in front of the printed result, indicating that the first
element of the vector X contains the value 3.

The elementary arithmetic operators can be listed by typing ?Arithmetic which opens the
help file.

> (X^2 + X*2) / (4-X)

[1] 15

There exists a priority listing for the various operators in expressions (see ?Syntax). Round
brackets are used to ensure that expressions are properly evaluated. To see this, try the above
expression without brackets:

> X^2 + X*2 / 4-X

[1] 7.5

In addition, R contains a suite of built-in mathematical functions, such as logarithms and
exponential (log, log10, log2, exp) and trigonometric functions (sin, cos, tan, asin, acos,
atan).

There is a special number (Inf) which represents infinity, and which can be used in ordinary
calculations. The value (NaN) represents an undefined value (Not a Number). Try:

16 Scientific computing in R

> 1/0

> 0/0

> 1e-8 * 1000

The engineering representation 1e-8 denotes 10−8. R also allows to represent missing values
by NA, meaning Not Available.

Exercises

Open a new blank file in the editor window. Write your R code in this file and use the “#”
for comments. This way you can keep the solutions to the exercises for later reference. Save
this file imemdiately under an appropriate name (e.g. “Solutions Chapter 2.R”).

Ex01: Using R as a calculator.

Use the R console to calculate the value of following mathematical expressions. Try the
different ways to submit the statements to R. You may want to look at the help files for some
of these functions. Typing ?Arithmetic will open a help file with the common arithmetic
operators.

� (15/6− 1)2/3 (Answer: 1.310371)

� log2(4096)/ln(20) (Answer: 4.005698)

� (2π)3 (Answer: 248.0502)

�

√
2.32 + 5.42 − 5 ∗ cos(π/8) (Answer: 5.46174)

Ex02: Unit conversion.

The primary production in the North Sea ranges from 50 to 400 gram Carbon (C) per meter
squared per year. Write a small script to recalculate this range in the units of mmol Carbon
per meter squared per day (knowing that the atomic weight of Carbon = 12 gram per mol).
(Answer: 11.4 - 91.3 mmol m-2 d-1)

Ex03: Estimating the natural Greenhouse effect.

The current average surface temperature on earth is about 15 oC. If the earth would have
no atmosphere containing greenhouse gases, its surface temperature (in Kelvin) could be
calculated from the formula T = ((1−A) ∗ S/(4σ))0.25 with known values for the planetary
albedo A (0.3), the solar flux S (1366 W m-2), and σ is a constant (5.67e-08 W m-2 K-4).
How chilly would it be on earth, and so how large is the natural greenhouse effect? Write a
small R script. (Answer: -18.33 deg C)

3.2. Creating a vector

The easiest way to create a vector is by means of the c() command (where the c stands for
concatenation)

V <- c(0, 5.1, 6, 12.3, 20)

Karline Soetaert and Filip Meysman 17

This c() function is presumably THE most important function in R.

Regular sequences of numbers can be generated by the functions seq (sequence) and rep (re-
peat). The seq() command takes as input the arguments from (start value of the sequence),
to (end value of the sequence) and either by (the increment) or length.out (the required
number of elements in the sequence).

V <- seq(from = 0, to = 1, by = 0.2)

V <- seq(from = 0, to = 1, length.out = 6)

Another way to produce a sequence is by the colon notation 1:10, which is an abbrevi-
ation for seq(from = 1, to = 10, by = 1) and represents the vector c(1, 2, ..., 9,

10). Accordingly, the colon operator creates a special type of sequences where the increment
is always 1. Other examples of the colon operator are:

> (V <- 0.5:10.5)

[1] 0.5 1.5 2.5 3.5 4.5 5.5 6.5 7.5 8.5 9.5 10.5

> (V <- 6:1)

[1] 6 5 4 3 2 1

The related function rep() is used to create a vector in which elements are repeated:

> (V <- rep(1, times = 5))

[1] 1 1 1 1 1

The rep() command can be used to replicate parts of vectors in complicated ways

> (V <- rep(c(1, 2), times=5))

[1] 1 2 1 2 1 2 1 2 1 2

> (V <- c(rep(1, 5), rep(2, 5)))

[1] 1 1 1 1 1 2 2 2 2 2

3.3. Other types of vectors

A vector cannot only contain numbers. For example, the concatenation function also works
for characters:

> (students <- c("Andreas", "Karel", "Pieter", "Anna"))

18 Scientific computing in R

[1] "Andreas" "Karel" "Pieter" "Anna"

The type of a vector is the kind of the elements it contains and must be one of the following:
logical, integer, double, complex, character, or raw. All elements of a vector must have the
same underlying type. This important restriction does not apply to lists (see below). We can
retrieve the type of the elements of a vector via:

> typeof(students)

[1] "character"

Try:

typeof(seq (from = 1, to = 4, by = 1))

typeof(1:4)

typeof(1i) # complex number

typeof(TRUE)

Finally, one can also create a vector using the function vector(). This method is particularly
useful if one does not know in advance how many elements will be stored, and so one can
create an empty vector.

> V <- vector(mode = "integer", length = 5)

> X <- vector()

The fisrt command generates an empty vector V of type integer and containing 5 elements
(filled with zero’s by default). The second vector creates an empty vector X of unknown
length. Normally numeric vectors are double precision by default. Integer vectors are only
used in special occasions.

A peculiar feature of R is that the elements of a vector can also be given names. For example,
the coordinates of a point in three dimensional space (x, y, z) could be implemented as:

> (point <- c(x = 1, y = 2, z = 3))

x y z

1 2 3

The names of the vector (or any other object) can be interrogated by the names() function

> names(point)

[1] "x" "y" "z"

Karline Soetaert and Filip Meysman 19

The advantage of given names to vector elements is that names are often easier to remember
than numeric indices. This option is particularly useful in connection with data.frames (see
below).

3.4. Calculating with vectors

In R it is as simple to perform calculations with vectors as it is with single numbers. The
calculations are performed on an element by element basis. In the next example, all elements
of the vector A are first multiplied with 2 and then the square root is taken.

> A <- c(1, 3, 5, 6)

> sqrt(A * 2)

[1] 1.414214 2.449490 3.162278 3.464102

However, be careful! When you perform operations on two vectors, make sure that they are of
the same length. This is because R has a peculiar recycling feature. Adding a vector of length
3 and a vector of length 5 would raise a so-called exception in most programming languages.
The language designers would assume the programmer has made an error. However, R allows
adding two vectors regardless of their relative lengths. The elements of the shorter vector are
recycled as often as necessary to create a vector the length of the longer vector. So when the
length of vectors do not match, R automatically recycles the shortest vector untill it matches
the longer one, and only then the operation is performed. R does issue a warning, but only
when the length of the longer vector is not an integer multiple of the length of the shorter
vector. So, for example, adding vectors of lengths 3 and 7 would cause a warning, but adding
vectors of length 3 and 6 would not

A <- c(1, 3, 5, 6)

B <- c(1, 2, 3)

A + B

Warning message:

In A + B : longer object length is not a multiple of shorter object length

When the length of the longer vector is an exact multiple of the shorter objects length, then
no warning will be issued:

> A <- c(1, 3, 5, 6)

> D <- c(1, 2)

> A + D

[1] 2 5 6 8

Accordingly, vectors can be used in arithmetic expressions. Built-in mathematical functions
can be directly applied to vectors, which leads to concise code. The following command
calculates the sine of a sequence and displays the result:

20 Scientific computing in R

> sin(seq(from = 0, to = 2*pi, by = pi/2))

[1] 0.000000e+00 1.000000e+00 1.224606e-16 -1.000000e+00

[5] -2.449213e-16

Although we used only one statement, it is more clear if we use two statements:

> A <- seq(from = 0, to = 2*pi, by = pi/2)

> sin(A)

[1] 0.000000e+00 1.000000e+00 1.224606e-16 -1.000000e+00

[5] -2.449213e-16

There also exist operations on vectors that return one single number. The min() and max()

functions select the smallest and largest element in the vector. The length() function returns
the number of elements, sum() provides the sum of all elements, and prod() their product.

> A <- 1:10

> c(sum (A), mean(A), min(A), max(A))

[1] 55.0 5.5 1.0 10.0

Two important statistical functions are the mean() and var() function, calculating the sample
mean and the sample variance of the data contained in the vector. The summary command
prints a set of statistics (min, max, mean,...) for a vector:

> summary(A)

Min. 1st Qu. Median Mean 3rd Qu. Max.

1.00 3.25 5.50 5.50 7.75 10.00

To compare two vectors one should use the parallel minimum pmin() and maximum pmax()

functions, which compare the two vectors side by side, and select the appropriate element in
each position.

> A <- c(1,2,3); B <- c(3,2,1)

> pmax(A,B)

[1] 3 2 3

> pmin(A^2,B^2)

[1] 1 4 1

Karline Soetaert and Filip Meysman 21

Accordingly, these functions return a vector of the same length as the largest input vector.

3.5. Indexing and subsetting of vectors

The elements inside a vector are indexed starting with 1. The elements of a vector can be
accessed using the square brackets []. If we want to obtain the second element of vector
point, we can write:

> point[2]

y

2

or, using the name of the element:

> point["y"]

y

2

If we want to obtain all except the second element of vector point, we write:

> point[-2]

x z

1 3

We can also use the index to subset a vector (i.e. change the values of specific elements of
that vector) :

> point["z"] <- 4

> point

x y z

1 2 4

Instead of a single element, one can also select more than one, by using a suitable indexing
vector (this is a vector containing integers).

> point[1:2]

x y

1 2

> point[c(1, 3)]

22 Scientific computing in R

x z

1 4

Subsetting can be applied to change multiple elements at once:

> grades <- c(henk = 8.5, herman = 5, petra = 7, louise = 6.5)

> boys <- c(1, 2)

> grades[boys]

henk herman

8.5 5.0

> grades[-boys]

petra louise

7.0 6.5

> grades[c("petra", "herman")]

petra herman

7 5

3.6. Logical vectors and conditions

R distinguishes the logical variables TRUE and FALSE, represented by the integers 1 and 0.
The logical operators are <, <=, >, >=, == for exact equality and != for inequality. The
symbol & means “and”, | is “or”, ! is “not”. Following help pages list the relational and logical
operators available in R.

> ?Comparison

> ?Logic

Logical expressions are often used to select elements from vectors (and matrices as we see
later) that obey certain criteria. Logical vectors (containing TRUE or FALSE as elements) are
created by conditions. For example:

> (V <- seq(from = -2, to = 2, by = 0.5))

[1] -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0

> (test <- V > 0)

[1] FALSE FALSE FALSE FALSE FALSE TRUE TRUE TRUE TRUE

Karline Soetaert and Filip Meysman 23

The vector test is a logical vector of the same length as vector V. The elements of test are
TRUE when the condition is met and FALSE otherwise. These logical vectors can be used
as indexing vectors to select part of a vector.

> V[test]

[1] 0.5 1.0 1.5 2.0

> V[V > 0]

[1] 0.5 1.0 1.5 2.0

will select the positive values from V. The statement

> V[V > 0] <- 0

will zero all positive elements in V, while

> sum(V < 0)

[1] 4

will return the number (4) of negative elements. The latter is possible because R represents
TRUE and FALSE by the integers 1 and 0, which can be summed. The statement

> V[V != 0]

[1] -2.0 -1.5 -1.0 -0.5

will display all nonzero elements from V (“!” is the “not” operator). Logical tests can also be
combined, using | (the “or” operator), and & (“and”).

> V [V <(-1) | V > 1]

[1] -2.0 -1.5

will display all values from V that are strictly smaller than -1 and strictly larger than 1. Note
that we have enclosed “-1” between brackets (can you see why this is necessary?) Finally, the
statements

> which (V == 0)

[1] 5 6 7 8 9

24 Scientific computing in R

> which.min (V)

[1] 1

will respectively return the index of elements with 0-value, and the index of the element that
contains the minimum inside V.

3.7. Removing elements

When the index is preceded by a “-”, the element is removed.

V <- V[-c(1,2)]

V <- V[-which(V >= 0)]

will delete the 1st element of V and the positive elements of V (3rd line). For more information,
type

?Extract

3.8. Exercises

Creating and manipulating vectors is essential if we want to use R as a mathematical tool.
Although this has been implemented in a consistent way in R, it is not simple for novice
users! Practice is the best teacher, so you will get plenty of exercise. Most of the exercises
can be answered with one single R-statement. However, as these statements can be quite
complicated, it is often simpler to first break them up into smaller parts, after which they are
merged into one.

Ex04: The mean of a vector.

Use R -function mean() to estimate the mean of two numbers, 9 and 17. (You may notice
that this is not as simple as you might think!).

Ex05: Vector V

� Create a vector, called V, which contains the even numbers between 16 and 56. (Hint:
use the R-function seq())

� Display this vector

� What is the sum of all elements of V? There exists an R-function that does this in one
statement.

� Display the first 4 elements of V

� Calculate the product of the first 4 elements of V (Hint: use R-function prod()).

� Display the 4th, 9th and 11th element of V. (Hint: use the concatenation function c()).

Karline Soetaert and Filip Meysman 25

Ex06: Vector W

� Create a new vector W, which equals vector V multiplied by 3. Display the content of W.

� How many elements of W are smaller than 100?

First create a new vector that contains only the elements from W < 100 (call it W100),
then calculate the length of this new vector.

� Now perform the same calculation, in one R statement.

Ex07: Sequences

� Create a sequence that contains the values (1, 1/2, 1/3, 1/4, . . ., 1/10).

� Compute the square root of each element.

� Compute the square (2) of each element.

� Create a sequence with values (0/1, 1/2, 2/3, 3/4, . . ., 9/10).

Ex08: Vector U

� Create a vector, U, with 100 random numbers, uniformly distributed between -1 and 1.

tip: R-statement runif generates uniformly distributed random numbers; use ?runif

to see how it works.

� Check the range of U; all values should be within -1 and +1.

tip: there exists an R-function to do that - its name is trivial.

� Calculate the sum and the product of the elements of U.

� How many elements of U are positive?

� Zero all negative values of U.

� Sort U.

Ex09: Vectors x, y

� Create two vectors: vector x, with the elements: 2, 9, 0, 2, 7, 4, 0 and vector y with the
elements 3, 5, 0, 2, 5, 4, 6 (in that order). (tip: use the c() function).

� Divide all the elements of y by the elements of x.

� Type in the following commands; try to understand:

x > y

x == 0

� Select all values of y that are larger than the corresponding values of x.

26 Scientific computing in R

� Select all values of y for which the corresponding values of x are 0.

� Remove all values of y for which the corresponding values of x equal 0.

� Zero all elements of x that are larger or equal than 7. Show x.

Karline Soetaert and Filip Meysman 27

4. Lists, data frames and data input/output

Besides vectors (and matrices), R allows the creation of more complex objects such as lists and
data frames. These two object types are very important for data storage. When performing
simulations or statistical analyses, function calls will often return their results as a list or data
frame. Similarly, when building your own functions, it is often useful to return the calculated
results as a list or data frame, especially when the function calculates different types of results.

4.1. Lists

Until now, we have used vectors to store data. However, vectors have one important re-
striction: all elements must be of the same type. This restriction no longer holds for a list.
Formally, a list is an object, which itself consists of an ordered collection of other objects,
referred to as the components of the list. The advantage is that the components of a list
can be of different types and/or lengths. For example, a personnel database could hold an
entry for each employee, specifying the personal details of the employee (e.g. name, number
of children, age of the children) :

> employee <- list(name = "Wendy", n.child = 2, child.age = c(21, 20))

The command length(employee) provides the number of (top level) components in the list
(three in the above example) while names(employee) lists the names of all components (name,
n.child and child.age).

The components are always ordered, meaning that they can be referenced by their index in
the list. To select a specific component one uses the double square bracket operator [[]].
To select the first component:

> employee[[1]]

[1] "Wendy"

If the component is itself a vector, then one can use the single bracket operator [] to select
a specific element in this vector.

> employee[[3]][1]

[1] 21

This last statement selects the first element of the vector, which itself forms the third com-
ponent of the list. A great advantage is that the components of a list can also be referenced
by their name. This can be done by using the $ notation:

> employee$name

[1] "Wendy"

28 Scientific computing in R

> employee$child.age[1]

[1] 21

Additionally, one can also use the name of the list component in double square brackets. This
is particularly when the name of the component is stored in another variable

> employee[["name"]]

[1] "Wendy"

> what.to.select <- "n.child"; employee[[what.to.select]]

[1] 2

This referencing of list components by name greatly improves the readability of R scripts.

To extract information from a list one can use either single brackets or double brackets.
It is very important to understand the difference between the commands employee[2] and
employee[[2]]. The operator [] always returns an object of the same type as the original
object.

> employee[1]

$name

[1] "Wendy"

> employee[[1]]

[1] "Wendy"

Accordingly, in the first case, a new list is created, which only keeps the first component of
the original list. In the second case, the value of the first component is returned (without its
name). The difference is further illustrated by the function typeof(), which shows the type
of an object. The type is "list" in the first case and "character" in the second case.

> typeof(employee[1]); typeof(employee[[1]])

[1] "list"

[1] "character"

Lists can be extended by specifying additional components. This can be done in a number of
ways:

Karline Soetaert and Filip Meysman 29

> employee["gender"] <- "Female"

> employee$working.hours <- 38

> employee <- c(employee,list(employer="NIOZ"))

> employee

$name

[1] "Wendy"

$n.child

[1] 2

$child.age

[1] 21 20

$gender

[1] "Female"

$working.hours

[1] 38

$employer

[1] "NIOZ"

The following example shows how one can create quite complicated data structures by using
list objects as components inside a list.

spec.list <- vector(mode = "list", length = 3)

names(spec.list) <- c("O2", "H2O", "CO2")

spec.list$O2 <- list(name = "oxygen", mol.weight = 32)

spec.list$H2O <- list(name = "water", mol.weight = 18)

spec.list$CO2 <- list(name = "carbon dioxide", mol.weight = 44)

The names() command initializes the names of the mother list. Each daughter component
of the mother list is in itself again a list object. Print spec.list on the screen and try to
understand its contents.

4.2. Data frames

Just like a list, a data frame can include different data types (e.g. character, logical, numeric),
though now arranged in a tabular format. The following table could be set up by a taxonomist
specialized in roundworms:

> genus <- c("Sabatieria", "Molgolaimus")

> dens <- c(1, 2)

> Nematode <- data.frame(genus = genus, density = dens)

> Nematode

genus density

1 Sabatieria 1

2 Molgolaimus 2

30 Scientific computing in R

In this example, the data frame Nematode contains two columns, one containing strings (the
genus name) and one containing numeric values (the densities). In essence, a data frame is
a special type of list (of the class data.frame) consisting of vectors with equal length. For
most purposes, a data frame can be regarded as a “generalized” matrix, where each column
stores a vector with a different type of elements. Many matrix operations also work on data
frames provided the data frame contains a single data type.

The vectors making up the columns of the data frames can be extracted by using $ and the
names of the column, or by using the double square bracket [[]] operator.

> Nematode$density[2]

[1] 2

> Nematode[[2,2]]

[1] 2

Just as with lists, one should be careful about the use of single brackets versus double brackets.
The object resulting from a selection with single brackets [], will be a new data frame or a
list. When using double brackets [[]], one will obtain a vector. Try:

> Nematode$genus

> Nematode[[1]]

> Nematode[1]

The first two statements are identical. The third statement will print the two genus names
in a different format.

The names of the columns are very convenient when manipulating the data contained within
the data frame. For instance:

> Nematode$density / sum(Nematode$density)

[1] 0.3333333 0.6666667

will calculate the relative density of each genus in the dataset (i.e. divide the density values
by the summed density). Similarly, the following command will calculate the mean density
of all nematode genera.

> mean(Nematode[,2])

[1] 1.5

Adding new columns to a data frame is simple. Here we add a column called size

> Nematode$size <- c(700, 400)

> Nematode

Karline Soetaert and Filip Meysman 31

genus density size

1 Sabatieria 1 700

2 Molgolaimus 2 400

The addition of new rows is preferably done with the rbind command (see chapter on matri-
ces):

> NewNem <- data.frame(genus = "Halalaimus", density = 10, size = 1000)

> Nematode <- rbind(Nematode, NewNem)

> Nematode

genus density size

1 Sabatieria 1 700

2 Molgolaimus 2 400

3 Halalaimus 10 1000

The helpfile ?Extract explains the various ways in which to extract elements from lists and
data frames.

4.3. Data Conversion

Conversion from one class of data structures to another can easily be done, e.g. by:

> as.data.frame(M)

> as.vector(A)

If unsure about the class, you can write:

> is.data.frame(M)

> is.vector(A)

Or you can display the data class by:

> class(M)

4.4. Data import from external sources

In all previous examples, data was entered as input from the keyboard. However, in scientific
applications, large data sets usually must be read from external files (e.g. ASCII or csv files).
R provides a number of tools to import data from such external sources. For advanced details
on importing and exporting data in R , see the R Data Import/Export manual.

The best practise is to structure an save your dataset in a tabular format, so that it can be
read directly as a data frame. To read data written in a tabular form from text files, on ecan
use the functions read.table(), read.csv(), or read.delim().

To read an entire data frame directly with read.table(), the external file must be formatted
following a rather strict template.

32 Scientific computing in R

� The first line of the file should list the names of all variables.

� Each additional line of the file should have a row label, followed by the values for each
variable.

Accordingly, the first line should have on item less than all following lines.

To see how this works, open the file “studentscores.txt” in the Rstudio editor window. You
will find a table with scores of students for different courses. Each line contains a row label
followed information about a specific student (names + scores). All items on a line are
separated by a space. The sep=" " argument specifies that the separator is a space.

> read.table("studentscores.txt",sep=" ")

name Physics Geology Biology

1 Fred 15 11 17

2 Ginger 12 14 13

3 Robbie 11 9 12

4 Lucy 12 7 6

The same student score information is contained within the file “studentscores.csv”, which is
now a comma separated file. This format has the advantage that it can easily be generated or
read by spreadsheet programs (like Ms Excel). The difference is that there are no row labels,
and items are separated by a comma (rather than a space).

> read.csv("studentscores.csv")

name Physics Geology Biology

1 Fred 15 11 17

2 Ginger 12 14 13

3 Robbie 11 9 12

4 Lucy 12 7 6

This read.csv statement results in exactly the same data frame as the above read.table

command.

Note: By default all numeric items (except row labels) are read as numeric variables and
non-numeric variables as factors. This can be changed if necessary.

4.5. Exercises

Ex01: North Sea

The following features characterizes the North Sea.

� average depth: 95 m

� surface area: 750 000 km2

� countries: France, U.K., Belgium, The Netherlands

Karline Soetaert and Filip Meysman 33

Summarize this information into a list. Determine the length of the countries vector in this
list using the function length(). Estimate the volume of the North Sea (Answer: 71250
km3).

Ex02: Wadden Sea data set

A marine biologist has determined the density of invertebrates in the sediments of the Wad-
den Sea and wants to store his data in a systematic way. She creates a separate list for
each species she has found. To properly identify a given organism, she uses the Aphi-
aID (a unique identifier) and Name from world register of marine species (WoRMS, see
http://www.marinespecies.org/), which stores information of all known marine organ-
imsms. For the common lugworm (a polychaet) the respective values are 129868 and “Areni-
cola marina (Linnaeus, 1758) ”.

� Create a list called “lugworm” that holds the above WoRMS information

� Add a new component this list named Environment with the value “Wadden Sea ” (the
sampling area)

� Add a new vector as a component to this list. This vector should hold the measured
densities (expressed in organsims per square meter) at 10 locations in the sampling area
(values: 15, 18, 35, 17, 5, 52, 8, 13, 67, 11).

� Calculate the mean density of lugworms for the first 8 stations in the Wadden Sea
dataset (Answer: 20.375).

Ex03: The world’s largest rivers

Create a data frame with the following information of the worlds largest rivers: (length in
km, discharge in m3/sec):

River length discharge

Nile 6650 5100

Amazon 6400 219000

Y angtze 6300 31900

Mississipi 6375 16200

� Calculate the mean length of the rivers.

� Add an extra column with the drainage area in 1000 km2, given as: c(3349, 6915,

1800, 2980). Hint: use cbind() to do this.

� Add an extra column with the length in miles. One mile = 1.609344 km. Hint: use the
existing column containing the river length in metres.

� Add the information for the river Rhine: length = 820 miles, discharge = 2290 m3 s−1,
drainage area = 170000 km2.

Ex04: Lists as output of a function (*)

The function diffcoeff (from the package marelac) calculates the molecular diffusion coeffi-
cient in water. What is the difference between following function calls (Hint: store each result
in variable called “test” and use typeof() to check the type of this new variable).

http://www.marinespecies.org/

34 Scientific computing in R

> diffcoeff(S = 35, t = 20, P = 1, species = "O2")[["O2"]]

> diffcoeff(S = 35, t = 20, P = 1, species = "O2")$O2

> diffcoeff(S = 35, t = 20, P = 1, species = "O2")

4.6. A real world application: Diversity of deep-sea nematodes

Nematodes are small (< 1 mm) roundworms, which can be very abundant in marine sedi-
ments. We will now work on a data set consisting of nematode species densities, found in
Mediterranean deep-sea sediments, at depths ranging from 160 m to 1220 m (see (Soetaert,
Heip, and Vincx 1991)). The densities are expressed in number of individuals per 10 cm2

(yes, nematologists use strange units!).

The data were originally present in a database, and have been exported as a table in the
comma-separated-values format (creating a csv file). Open the file “nemaspec.csv” in your
editor. Check its structure. You may also open the file in your spreadsheet software, but do
not forget to close it before proceeding. Excel is rather “territorial”, and will not allow R (or
any other program) to access a file that is open in Excel.

On the first line is the heading (the names of the stations), the first column contains the
species names. Make a script file in which you write the next steps. Submit each line to R to
check its correctness.

Read the comma-delimited file, using R-command read.csv. Type ?read.csv if you need
help. Specify that the first row is the heading (header=TRUE) and the first column contains
the rownames (row.names=1). Put the data in data.frame Nemaspec.

Nemaspec <- read.csv("nemaspec.csv", header = TRUE, row.names = 1)

Check the contents of Nemaspec. As the dataset is quite substantial, it is best to output only
the first part (the head) of the data:

head(Nemaspec)

The rest is up to you:

� Select the data from station M160b (the 2nd column of Nemaspec). Put these data in
a vector called dens. (Hint: to select a complete column, you can leave the row index
blanc).

� Remove from vector dens, the densities that are 0. Display this vector on the screen.
(Answer: [1] 6.580261 5.919719 etc. . .)

� Calculate N, the total nematode density of this station. The total density is simply the
sum of all species densities (i.e. the sum of values in vector dens). What is the value of
N ? (Answer: 699).

� Divide the values in vector dens by the total nematode density N. Put the results in
vector p, which now contains the relative proportions for all species. The sum of all
values in p should now equal 1. Verify this.

Karline Soetaert and Filip Meysman 35

� Calculate S, the number of species: this is simply the length of p. (Answer: S=126)

� Estimate the values of the diversity indices N1 and N2 and Ni, given by the following
formulae:

N1 = exp (
∑
−pi · loge(pi))

N2 = 1/
(∑

p2
i

)
N∞ = 1/max(p)

You can calculate each of these values using only one R statement ! (A: 90.15358,
66.77841, 22.56157)

� The 126 nematode species per 10 cm2 were obtained by looking at all 699 individuals.
Of course, the fewer individuals are determined to species level, the fewer species will
be encountered. Some researchers determine 100 individuals, other 200 individuals. To
standardize their results, the expected number of species in a sample can be recalculated
based on a common number of individuals. The expected number of species in a sample
with size n, drawn from a population which size N , which has S species is given by:

ES(n) =

S∑
i=1

[
1−

(
N−Ni
n

)
(Nn)

]

where Ni is the number of individuals in the ith species in the full sample and is the
so-called “binomial coefficient”, the number of different sets with size n that can be
chosen from a set with total size N .

In R , binomial coefficients are estimated with statement choose(N, n).

What is the expected number of species per 100 individuals ? (n=100,N=699). (A:
ES(100) = 60.68971).

� Print all diversity indices to the screen, which should look like:

N N0 N1 N2 Ni ESS

699.00000 126.00000 90.15358 66.77841 22.56157 60.68971

36 Scientific computing in R

5. Functions and flow control

Computers are very good at performing repetitive tasks. Yet, without proper programming
tools, such tasks would require an endless repetition of commands, and so scripts would rapidly
become very lengthy. To deal with this problem, R offers loop control, and more importantly,
it enables that users can write their own functions. The goal of such a user-defined function is
to put a large set of operations under one single heading, so these operations can be executed
by one single statement. The more the same set of operations is repeated, the more it pays off
to encapsulate these commands into an R function. As it happens, these user-defined function
are one of the most powerful features of R . Therefore, it is extremely important to learn how
to correctly create and implement functions in R scripts, as they provide a convenient and
powerful tool to write elegant code.

5.1. Functions

Suppose that every time a statitician wants to use the normal distribution, he needs to write
down the lengthy formula for the normal probability density distribution. Clearly, this would
be rather tiresome. Fortunately, R provides the dnorm() function, which offers a very compact
way to specify the normal distribution. A user-defined function operates in a similar way as a
built-in function like dnorm(). The major difference is that one first has to create the function,
before one can apply it. The creation of a user-defined function is done by an assignment of
the form

function.name <- function(arg1, arg2, ...) {

expression ...

result <- ...

return (result)

}

The function acts as a processor of information. It requires a given input information, which
is specified by the list of arguments (arg1, arg2,...). Based on this input information, the
function will calculate a final output (result), which is then passed on (via the return

statement).

After submitting a function to R console, the function is stored as an object in the workspace.
Once this has occurred, the function can be used at any point in the script by the function
call command:

function.name(arg1 = x1, arg2 = x2, ...)

In this, x1 and x1 provide the actual value for the arguments arg1 and arg2. When initializing
the argument of a function, one must always use the “=” operator and not the assignment
arrow “<-”.

To illustrate this, suppose that we need to calculate the surface area for six spheres, whose
radius varies as R = 1 ,2, 4, 8, 16, 32. One possibility would be to write a sequence of
statements like:

R <- 1; 4 * pi * R^2

R <- 2; 4 * pi * R^2

...

Karline Soetaert and Filip Meysman 37

This repetition of statements makes the script lengthy, and moreover, when copying a formula
many times, it’s easy to make a copy-and-paste mistake. A far more elegant solution is to
create a function:

Sphere.area <- function (radius) {

area <- 4 * pi * radius^2

return (area)

}

The name of the function is Sphere.area and it uses the variable radius as its single argu-
ment. After submitting this function definition to the R console, we can use it to calculate
the surface area of the requested spheres. For the first sphere, this becomes:

Sphere.area(radius = 1)

[1] 12.56637

Note how the functions works. First the argument radius is initialized with value 1. Subse-
quently, the function expression is evaluated (the formula for the surface area is applied) and
stored in the local object area. The content of area is returned as the final result.

We can now calculate the surface area for all spheres at once, and assign the result of this
calculation to a vector

R <- c(1, 2, 4, 8, 16)

Area <- Sphere.area(radius = R)

This nicely illustrates how a user-defined function allows to write code that has fewer state-
ments. Moreover, because one has automated the calculation, the end result is also less prone
to errors.

When calling a function, it is not strictly needed to explicitly specify the name of the argu-
ments. The following also works:

Sphere.area(1)

[1] 12.56637

However, if one does not write the argument names, the order in which the arguments are
specified should be respected. This is never a problem when there is only one argument, but
when there are multiple arguments, the order of the arguments matters. To illustrate this,
let’s define a function for the surface area of a cylinder.

Cylinder.area <- function (radius, height) {

area <- pi * radius^2 * height

return (area)

}

38 Scientific computing in R

Check which of the following statements actually calculates the area of a cylinder with radius
of 2 m and a height of 1 m.

Cylinder.area(1, 2)

Cylinder.area(2, 1)

Cylinder.area(radius = 1, height = 2)

Cylinder.area(height = 2, radius = 1)

The following function exactly mimics the built-in mean() function

mean.mimic <- function (x) {

N <- length(x)

result <- sum (x)/N

return (result)

}

One can verify that mean() and mean.mimic() indeed provide the same result:

mean(0 : 10)

[1] 5

mean.mimic(0 : 10)

[1] 5

The curly braces {. . .} delineates a group of expressions. The value of the group as a whole is
the result of the last expression. Such grouped expressions are particularly useful in functions,
where only the last result of a whole series of calculations needs to be passed on. To ensure
that the proper result is returned, it is advisable that the return() statement is explicitly
stated. The evalution of the grouped expression inside the function is stopped as soon as
return() is called. If the end of a function is reached without calling return, the value of
the last evaluated expression is returned. For instance, the same function definition can be
written in shorthand form as :

mean.mimic <- function (x) sum(x)/length(x)

The result returned by a function can be a more complicated object than just one element
or a vector. One can also return a list or data.frame. The next function calculates the
surface area and the volume of a sphere:

Sphere <- function(radius) {

volume <- 4/3 * pi * radius^3

area <- 4 * pi * radius^2

result <- list(volume = volume, area = area)

return (result)

}

Karline Soetaert and Filip Meysman 39

The earth has an approximate radius of 6371 km, so its volume (km3) and surface area (km2)
are:

Sphere(radius = 6371)

$volume

[1] 1.083207e+12

$area

[1] 510064472

The next statement will only display the volume of a sequence of spheres with radius 1, 2, . . .
5

Sphere(radius = 1:5)$volume

[1] 4.18879 33.51032 113.09734 268.08257 523.59878

Often it is convenient to provide default values for the input parameters. For instance, the
next function estimates the density of “standard mean ocean water” (in kg m−3), as a function
of the temperature T, (assuming salinity = 0 and pressure = 1 atm) (Millero and Poisson
1981). The argument T is set by default equal to the value 20 ◦C:

Rho_W <- function(T = 20) {

dens <- 999.842594 + 0.06793952 * T - 0.00909529 * T^2 +

0.0001001685 * T^3 - 1.120083e-06 * T^4 + 6.536332e-09 * T^5

return(dens)

}

By ending the first sentence with a “+” we made clear that the statement is not finished and
continues on the next line. It would have been wrong to put the + on the next line. Calling
this function without specifying the value for the temperature, the function uses the default
value T = 20:

Rho_W()

[1] 998.2063

Rho_W(T = 20)

[1] 998.2063

Rho_W(0)

[1] 999.8426

40 Scientific computing in R

Rho_W(T = c(5, 10, 15))

[1] 999.9668 999.7021 999.1016

5.2. Control statements

Like all high-level programming languages, R has a number of statements that control the
execution flow, that is, the order in which statements are executed. (!Control opens a help
file on this topic)

Repetitive execution: Loops

If we want a set of commands to be repeated several times, we can use a loop statement.
The computer will execute the instructions in the loop a specified number of times or until a
specific condition is met. Once the loop is complete, the computer moves on to the next line
of code immediately following the loop. There are three type of loops: the for, the while and
the repeat loops. These loop types are largely equivalent in the sense that a loop constructed
using one type could also be constructed by the other two types.

The for loop iterates over a specified set of values. In the example below, the loop variable
i takes on the values (1,2,3):

for (i in 1:3) {

x <- c(i, 2*i, 3*i)

print(x)

}

[1] 1 2 3

[1] 2 4 6

[1] 3 6 9

Again, the curly braces {. . .} group multiple statements that are executed in each iteration.

The while and repeat loop statements will execute until a specified condition is met.

i <- 1

while(i < 4) {

x <- c(i, 2*i, 3*i)

print(x)

i <- i + 1

}

[1] 1 2 3

[1] 2 4 6

[1] 3 6 9

The break statement exits the loop and can be used to terminate the loop. This is the only
way to terminate repeat loops. The next statement stops the current iteration and advances
to the next iteration.

Karline Soetaert and Filip Meysman 41

i <- 1

repeat {

print(i)

i <- i + 1

if (i > 2) break

}

[1] 1

[1] 2

Note: loops are implemented very inefficiently in R and should be avoided as often as possible.
Fortunately, R offers many high-level commands that operate on whole vectors and matrices,
thus it is often not necessary to use loops.

Conditional execution: if, else, ifelse constructs

These constructs only will execute statements if some condition is met. Try to understand
the following:

Number.test <- function (x) {

if (x < 0) string <- "negative" else

if (x < 2) string <- "positive, smaller than 2" else

string <- "larger or equal than 2"

print(string)

}

Number.test(-1)

[1] "negative"

Number.test(1)

[1] "positive, smaller than 2"

Number.test(2)

[1] "larger or equal than 2"

Note that we have specified the else clause on the same line as the if part so that R knows
that the statement is continued on the next line!

The conditions that are used in if/else statements must evaluate to a single logical value.
The ifelse(test, yes, no) construct is a vectorized version (see ?ifelse).

x <- c(-1, 1, 2)

ifelse (x > 0, "strictly positive", "negative")

42 Scientific computing in R

[1] "negative" "strictly positive" "strictly positive"

For more information about if constructs and loops, check out the help page ?Control.

5.3. Exercises.

Ex 01: R-function sphere. Extend the Sphere function with the circumference of the sphere
at the place of maximal radius. The formula for estimating the circumference of a circle with
radius r is: 2 · π · r. What is the circumference of the earth near the equator?

Ex 02: Mimicking the var function. Write a function that mimics the effect of the variance
function var(). The variance is calculated as: var =

∑
(x− µ)2/(N − 1) where N is the

number of datapoints in the dataset and µ is the arithmetic mean. (tip: use the function
mean to calculate µ). Calculate the variance of the data sequence (1, 2, ..., 9, 10).

(A: 9.166667)

Ex 03: An R-function to estimate saturated oxygen concentrations. The saturated oxygen con-
centration in water (µmol kg−1), as function of temperature (T), and salinity (S) can be
calculated by: SatOx = eA where :

A = −173.9894 + 25559.07/T + 146.4813 ∗ ln(T/100)− 22.204T/100+

S(−0.037362 + 0.016504T/100− 0.0020564T/100 ∗ T/100)

and T is temperature in Kelvin (Tkelvin = Tcelsius + 273.15).

Tasks:

� Make a function that implements this formula; the default values for temperature and
salinity are 20◦C and 35 respectively.

� What is the saturated oxygen concentration at the default conditions? (A: 225.2346)

� Estimate the saturated oxygen concentration for a range of temperatures from 0 to 30
◦C, and salinity 35. (Tip: no need to use loops). Plot this function as an x-y plot.

Ex 04: Fibonacci numbers The Fibonacci numbers are calculated by the following relation:
Fn = Fn−1 + Fn−2

with F1 = F2 = 1

Tasks:

� Compute the first 50 Fibonacci numbers; store the results in a vector (use the R-
command vector to create it). You will need to use a loop here.

� For large n, the ratio Fn/Fn−1 approaches the “golden mean”: (1 +
√

5)/2

� What is the value of F50/F49; is it equal to the golden mean?

� When is n large enough? (i.e. sufficiently close (<1e−6) to the golden mean)

Ex 05: Diversity of deep-sea nematodes for all stations

Karline Soetaert and Filip Meysman 43

� Starting from your code to estimate diversity indices for deep-sea station M160b (see
chapter 4.6), now write a loop that does so for all the stations in data.frame Nemaspec.

� First create a matrix called div, with the number of rows equal to the number of deepsea
stations, and with 6 columns, one for each diversity index. This matrix will contain the
diversity values.

� The column names of div are: “N”, “N0”, “N1”, “N2”, “Ninf”, “ESS”

The row names of matrix div are the station names (= the column names of Nemaspec).
Tip: Use R-command colnames(), rownames()

� Now loop over all columns of data frame Nemaspec, estimate the diversity indices and
put the results in the correct row of matrix div:

for (i in 1:ncol(Nemaspec)) {

you have to write this part of the code

}

� Show matrix div to the screen

44 Scientific computing in R

6. Statistics

R originated as a statistical package, and it is still predominantly used for this purpose.

You can do virtually any statistical analysis in R.

As there exist many documents that may help you with statistical analyses in R, we will not
deal with the subject here.

Statistics is used just to show you how to use efficiently use R, in cases where you have no
clue where to begin!

6.1. Using R in four steps

Suppose you want to perform a hierarchic clustering and plot the dendrogram of a multivariate
data set.

If you have never done that in R here are the steps:

1. Find a function that performs the requested task.

for instance, use help.search ("cluster") to help you.

Depending on the number of packages that you have installed, R will list a number of
possible functions whose help file contains the word “cluster”. Use the function from the
package stats (part of the core of R).

2. Open the help file (?<name-of-the-function>) and look up the syntax for this function.
If you have no time to read it completely, at least read (part of) the section“Description”,
“Usage”, and “Examples”.

3. Try the examples in the help file. You may:

� Try them all at once (example(<name-of-the-function>).

� Alternatively, you may select the statements in the Examples section that look
applicable to your problem, copy-paste them into your script file (Ctrl-C / Ctrl-V)
and execute them; e.g. line by line. Chances are real that, if they are suited for
your case, you will transform them anyway.

4. Transform a promising example so that it suits your problem.

6.2. Exercise: multivariate statistics on the nematode species data.

Use R to perform a multivariate statistical analysis of the nematode data.

Beware: the nematode data have stations as columns and species as rows.

� Perform a hierarchic clustering and plot the dendrogram

� Perform a principal component analysis (PCA) and plot the results; you may also repeat
the PCA analysis, with the first two stations removed!

Karline Soetaert and Filip Meysman 45

plotting region

margin 1

2

3

4

Figure 3: The four (inner) margins of an R figure and the plotting region.

7. Graphics

R has extensive graphical capabilities, and allows making simple (1-D, x-y), image-like (2-D)
and perspective (3-D) figures.

Try:

> demo(graphics)

> demo(image)

> demo(persp)

to obtain a display of R’s simple (1-D, x-y), image-like (2-D) and perspective (3-D) capabili-
ties.

Graphics are plotted in the figure window which floats independently from the other windows.
If not already present, it is launched by writing (in windows):

> windows()

or

> x11()

A figure consists of a plot region surrounded by 4 margins, which are numbered clockwise,
from 1 to 4, starting from the bottom (figure 3). R distinguishes between:

46 Scientific computing in R

1. high-level commands. By default, these create a new figure, e.g.

� hist, barplot, pie, boxplot, ...

� plot, curve, matplot, pairs,... ((x-y)plots)

� image, contour, filled.contour,... (2-D surface plots)

� persp, scatterplot3d,... (3-D plots) 1.

2. low-level commands that add new objects to an existing figure, e.g.

� lines, points, segments, polygon, rect, text, arrows, legend, abline, locator,
rug, ... These add objects within the plot region

� box, axis, mtext (text in margin), title, ... which add objects in the plot margin

3. graphical parameters that control the appearance of.

� plotting objects:

cex (size of text and symbols), col (colors), font, las (axis label orientation), lty
(line type), lwd (line width), pch (the type of points),...

� graphic window:

mar (the size of the margins), mfrow (the number of figures on a row), mfcol

(number figures on a column), ...

> ?plot.default

> ?par

> ?plot.window

> ?points

will open the help files, while

> example(plot.default)

> example(points)

will run the examples, displaying each new graph, after you have pressed “<ENTER>” (try
it!)

7.1. X-Y plots

A circle can be plotted by (x,y) points, where x = r · cos(a) and y = r · sin(a), with a the
angle, from 0 to 2π, and r the radius. In the following script, we first generate a sequence of
angle values, a, from 0 to 2π, comprising 100 values (length.out) and then plot a circle with
unit radius:

a <- seq(from = 0, to = 2*pi, length.out = 100)

plot(x = cos(a), y = sin(a))

Karline Soetaert and Filip Meysman 47

●
●
●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●

●●●●●●●●●●●●●●
●

●
●

●
●

●
●

●
●

●
●

●
●

●
●
●
●
●
●
●
●
●
●
●
●

●
●

●
●

●
●

●
●

●
●

●
● ● ● ● ● ● ● ● ● ● ● ● ● ●

●
●

●
●

●
●

●
●

●
●

●
●
●
●
●
●
●
●

−1.0 −0.5 0.0 0.5 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

cos(a)

si
n(

a)

Figure 4: Simple figure with plot - see text for R-code

As plot is a high-level command, it will start a new figure. By default, R adds axes, and
labels, and represents the (x,y) data as small dots (points). Note that the graph is not
symmetrical (it is not a circle).

We will now make a more complex figure that resembles a “target face”, e.g. for practicing
archery or to throw darts. We first use the same command (plot) as above, but we add a
number of graphical parameters specifying that:

� Rather than dots, the points should be connected by lines (type).

� The line should be twice as wide as the default (lwd)

� The x- and y-axes labels (xlab, ylab) have to be empty

� The axes and axes annotations (axes) are removed

� The graph has to be symmetrical, i.e. the x/y aspect ratio = 1 (asp).

plot(cos(a), sin(a), type = "l", lwd = 2, xlab = "", ylab = "",

axes = FALSE, asp = 1)

To this figure, we can now add several low-level objects:

� a series of lines, representing smaller and smaller circles (lines).

for (i in seq(from = 0.1, to = 0.9, by = 0.1)) lines(i*sin(a), i*cos(a))

� an innermost red polygon (polygon).

1scatterplot3d is in R package scatterplot3d which has to be loaded first

48 Scientific computing in R

polygon(sin(a)*0.1, cos(a)*0.1, col = "red")

� point marks as text labels, ranging from from 10 to 1 (text). The closer to the centre,
the higher the score

for (i in 1:10) text(x = 0, y = i/10-0.025, labels = 11-i, font = 2)

� Now two archers take 10 shots at the target face.

We mimic their arrows by generating normally distributed (x,y) numbers, with mean=0
(the centre!) and where the experience of the archer is mimicked by the standard devi-
ation. The more experienced, the closer the arrows will be to the centre, i.e. the lower
the standard deviation. R-statement rnorm generates normally distributed numbers;
we need 20 of them, arranged as a matrix with 2 columns (the x and y values).

shots1 <- matrix(ncol = 2, data = rnorm(n = 20, sd = 0.2))

shots2 <- matrix(ncol = 2, data = rnorm(n = 20, sd = 0.5))

� The shots are added to the plot as points, colored darkblue (experienced archer) and
darkgreen (beginners level). Note that we choose a 50% enlarged point size (cex), and
we choose a circular shaped point (pch = 16)

points(shots1, col = "darkblue", pch = 16, cex = 1.5)

points(shots2, col = "darkgreen", pch = 16, cex = 1.5)

� Finally, we add a legend, explaining who has done the shooting:

legend("topright", legend = c("Karline", "Filip"), pch = 16,

col = c("darkblue", "darkgreen"), pt.cex = 1.5)

Note that the legend text and the colors are inputted as a vector of strings, using the c()

function (e.g. c("A", "B")).

7.2. X-Y plots; conditional plotting

As a more sophisticated demonstration of the use of symbols in R-graphs, we work on a bio-
logical example, from the R data set called“Orange”. This data set contains the circumference
(in mm, at breast height) measured at different ages for five orange trees. We start by looking
at the data (only the first and last part is displayed).

head(Orange)

Karline Soetaert and Filip Meysman 49

10
9
8
7
6
5
4
3
2
1

●

●●

●
●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

Karline
Filip

Figure 5: Figure with several low-level objects - see text for R-code

Tree age circumference

1 1 118 30

2 1 484 58

3 1 664 87

4 1 1004 115

5 1 1231 120

6 1 1372 142

tail(Orange)

Tree age circumference

30 5 484 49

31 5 664 81

32 5 1004 125

33 5 1231 142

34 5 1372 174

35 5 1582 177

and make a rough plot of circumference versus age:

plot(x = Orange$age, y = Orange$circumference, xlab = "age, days",

ylab = "circumference, mm", main = "Orange tree growth")

As Orange is a dataframe, columns can be addressed by their names, Orange$age and
Orange$circumference.

The output (Fig. 6) shows that there is a lot of scatter, which is due to the fact that the five
trees did not grow at the same rate.

It is instructive to plot the relationship between circumference and age differently for each
tree. In R this is simple: we can make some graphical parameters (symbol types, colors,
size,...) conditional to certain “factors”.

50 Scientific computing in R

●

●

●

●
●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

500 1000 1500

50
10

0
15

0
20

0

Orange tree growth

age, days

ci
rc

um
fe

re
nc

e,
 m

m

Figure 6: Simple plot of the orange dataset - see text for R-code

Factors play a very important part in the statistical applications of R; for our application, it
suffices to know that the factors are integers, starting from 1.

In the R statement below, we simply use different symbols (pch) and colors (col) for each
tree: pch = (15:20)[Orange$Tree] means that, depending on the value of Orange$Tree

(i.e. the tree number), the symbol (pch) will take on the value 15 (tree 1), 16 (tree 2),... 20
(tree 5). The code col = (1:5) [Orange$Tree] does the same for the point color. The final
statement adds a legend, positioned at the bottom, right.

plot(x = Orange$age, y = Orange$circumference, xlab = "age, days",

ylab = "circumference, mm", main = "Orange tree growth",

pch = (15:20)[Orange$Tree], col = (1:5)[Orange$Tree], cex = 1.3)

legend("bottomright", pch = (1:5)[order(levels(Orange$Tree))],

col=(1:5)[order(levels(Orange$Tree))], legend = 1:5)

The output (Fig. 7) shows that tree number 5 grows fastest, tree number 1 is slowest growing.
(note: it is also instructive to run the examples in the Orange help file.)

7.3. Zooplankton growth rates

Zoogrowth from package marelacTeaching is a literature data set, compiled by (Hansen,
Bjornsen, and Hansen 1997) with measurements of maximal growth rates of zooplankton
organisms as a function of body volume.

Run the example for this data set (you will need to load package marelacTeaching first):

> require(marelacTeaching)

> example(Zoogrowth)

7.4. Images and contour plots

R has some very powerful functions to create images and add contours. For example, the

Karline Soetaert and Filip Meysman 51

●

●

●

●
●

● ●

●

●

●

●

●

●
●

500 1000 1500

50
10

0
15

0
20

0

Orange tree growth

age, days

ci
rc

um
fe

re
nc

e,
 m

m

●

1
2
3
4
5

Figure 7: Improved plot of the orange dataset - see text for R-code

data set Bathymetry from the marelac package can be used to generate the bathymetry (and
hypsometry) of the world oceans (and land):

require(marelac)

image(Bathymetry$x, Bathymetry$y, Bathymetry$z, col = femmecol(100),

asp = TRUE, xlab = "", ylab = "")

contour(Bathymetry$x, Bathymetry$y, Bathymetry$z, add = TRUE)

Note the use of asp = TRUE, which maintains the aspect ratio.

7.5. Plotting a mathematical function

Plot curves for mathematical functions are quickly generated with R-command “curve”:

> curve(expr = sin(3*pi*x))

> curve(expr = sin(3*pi*x), from = 0, to = 2, col = "blue",

xlab = "x", ylab = "f(x)", main = "curve")

> curve(expr = cos(3*pi*x), add = TRUE, col = "red", lty = 2)

> abline(h = 0, lty = 2)

> legend("bottomleft", c("sin", "cos"),

text.col = c("blue", "red"), lty = 1:2)

The first command will plot the curve for y = sin(3 · π · x), using the default settings (Fig. 9
left), while the next commands first draw a graph of y = sin(3 · π · x) in blue (col), and for
x values ranging between 0 and 2 (from, to), adding a main title (main) and x- and y-axis
labels (xlab, ylab) (1st sentence).

The 2nd R-sentence adds the function y = cos(3 ·π ·x), as a red (col) dashed line (lty). Note
the use of parameter add = TRUE, as by default curve creates a new plot.

The final statements adds the x-axis, i.e. a horizontal, dashed (lty = 2), line (abline) at y
= 0 and a legend.

52 Scientific computing in R

−150 −100 −50 0 50 100 150

−
50

0
50

 −5000

 −5000

 −5000

 −5000

 −5000

 −5000

 −5000

 −
50

00

 −5000

 −
50

00

 −5000
 −5000

 −5000

 −5000

 −4000

 −
40

00

 −4000

 −4000

 −4000

 −4000

 −4000

 −4000

 −
40

00

 −4000

 −4000

 −4000

 −4000

 −4000 −3000 −3000

 −
3000

 −3000

 −3000
 −3000

 −3000

 −
30

00

 −3000

 −3000

 −3000

 −3000

 −2000

 −2000

 −2000

 −2000

 −1000

 −1000

 −1000

 −1000

 −
10

00

 0

 0
 0

 0

 0

 0

 0

 0

 0

 0

 0

 0

 0

 0

 0

 0

 0

 0

 0

 0

 0

 1000

 1000

 1000

 1000

 1
00

0

 1000
 1000

 2000

 2000

 2000

 3000 3000

 3000

 3000

Figure 8: Image plot of ocean bathymetry - see text for R-code

0.0 0.2 0.4 0.6 0.8 1.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

x

si
n(

3
*

pi
 *

 x
)

0.0 0.5 1.0 1.5 2.0

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

curve

x

f(
x)

sin
cos

Figure 9: Plotting a mathematical function using curve - see text for R-code

Karline Soetaert and Filip Meysman 53

7.6. Multiple figures

There are several ways in which to arrange multiple figures on a plot. The simplest is by
specifying the number of figures on a row (mfrow) and on a column (mfcol):

> par(mfrow = c(3, 2))

will arrange the next plots in 3 rows, 2 columns. Graphs will be plotted row-wise.

> par(mfcol = c(3, 2))

will arrange the plots in 3 columns, 2 rows, in a columnwise sequence. Note that both mfrow

and mfcol must be inputted as a vector. Try:

> par(mfrow = c(2, 2))

> for (i in 1:4) curve(sin(i*pi*x), 0, 1, main = i)

The R-function layout allows much more complex plot arrangements. But it is significantly
more difficult to use.

7.7. Histograms, boxplots

The data set morley contains the results of a classical experiment of Michaelson and Morley
on the speed of light. The data comprise five experiments, each consisting of 20 consecutive
“runs”. The response is the speed of light measurement.

We first look at the data:

head(morley)

Expt Run Speed

001 1 1 850

002 1 2 740

003 1 3 900

004 1 4 1070

005 1 5 930

006 1 6 850

We will plot 4 figures, arranged in two rows:

par(mfrow = c(2, 2))

Then, we plot a histogram of the given measurements:

hist(morley$Speed, xlab = "speed of light",

main = "Michaelson-Morley")

The same data can also be visualised as a ”density plot”, or a Box-and-whisker plot:

54 Scientific computing in R

plot(density(morley$Speed), xlab = "speed of light",

main = "Michaelson-Morley")

boxplot(morley$Speed, ylab = "speed of light",

main = "Michaelson-Morley")

Box-and-whisker plots are also convenient ways to see whether a certain treatment has an
impact. To make such a Box-and-whisker plot, we need to use the “formula” representation
that is often used in R. In this representation, e.g. y~group means that y should be expressed
as a function of the groups in x.

For instance, to visualise whether the experiment had an effect on the speed-of-light measure-
mente, we make a boxplot depicting the speed as a function of the experiment (Expt):

boxplot(Speed ~ Expt, data = morley, ylab = "speed of light",

main = "Speed of Light", xlab = "Experiment No.")

7.8. Exercises

Ex01: Plotting data, manual input The following oxygen concentrations were measured at
hourly intervals, starting at 8 o’clock, from the jetty near our institute:

(210, 250, 260, 289, 280, 260, 270, 260).

Make a plot that displays these data. Use large symbols, and label the axes appropriately.

Ex02: Human population growth The human population (N, millions of people) at a certain
time t, can be described as a function of time (t), the initial population density at t = t0
(denoted by “Nt0”), the carrying capacity “K” and the rate of increase “a” by the following
equation 2:

N(t) =
K

1 + [K−Nt0
Nt0

]e−a·(t−t0)

For the US, the population density in 1900 (Nt0) was 76.1 million; the population growth can
be described with parameter values: a=0.02 yr−1, K = 500 million people.

Actual population values are:

1900 1910 1920 1930 1940 1950 1960 1970 1980

76.1 92.4 106.5 123.1 132.6 152.3 180.7 204.9 226.5

Tasks:

1. Plot the population density curve as a thick line, using the US parameter values.

2. Add the measured population values as points. Finish the graph with titles, labels etc...

Ex03: Simple curves

2This is the solution of a so-called logistic differential equation (Verhulst 1838)

Karline Soetaert and Filip Meysman 55

Michaelson−Morley

speed of light

F
re

qu
en

cy

600 700 800 900 1100

0
5

15
25

600 800 1000

0.
00

0
0.

00
2

0.
00

4

Michaelson−Morley

speed of light

D
en

si
ty

●

●

●

70
0

90
0

Michaelson−Morley

sp
ee

d
of

 li
gh

t

●

●●

●

●
●

1 2 3 4 5

70
0

90
0

Speed of Light

Experiment No.

sp
ee

d
of

 li
gh

t

Figure 10: Four ways to look at the same data.

56 Scientific computing in R

� Create a script file which draws a curve of the function y = x3sin2(3πx) in the interval
[-2, 2].

� Make a curve of the function y = 1/cos(1 + x2) in the interval [-5,5].

Ex04: Toxic ammonia Ammonia nitrogen is present in two forms: the ammonium ion (NH+
4)

and unionized ammonia (NH3). As ammonia can be toxic at sufficiently high levels, it is
often desirable to know its concentration.

The relative importance of ammonia, (the contribution of ammonia to total ammonia nitrogen,
NH3/(NH3 + NH+

4), is a function of the proton concentration [H+] and a parameter KN ,
the so-called stoichiometric equilibrium constant:

p[NH3] =
KN

KN + [H+]

Tasks:

� Plot the relative fraction of toxic ammonia to the total ammonia concentration as a
function of pH, where pH = −log10([H+]) and for a temperature of 30◦C. Use a range
of pH from 4 to 9.

The value of KN is 8 10−10 at a temperature of 30◦C.

� Add to this plot the relative fraction of ammonia at 0◦C; the value of KN at that
temperature is 8 10−11 mol kg−1.

Ex05: The iris data set A famous data set that is part of R is the “iris” data set (Fisher,
1936), which we will explore next.

It gives measurements, in centimeters for sepal length and width and petal length and width,
respectively, for 50 flowers of the species Iris setosa, Iris versicolor and Iris virginica.

Tasks:

� Have a look at the data:

� What is the class of the data set? why?

� What are the dimensions of the data set? (number of rows, columns)

� Produce a scatter plot of petal length against petal width; produce an informative title
and labels of the two axes.

� Repeat the same graph, using different symbol colours for the three species.

� Add a legend to the graph. Copy-paste the result to a WORD document. If you do not
have WORD, make a PDF file of the graph.

� Create a box-and-whisker plot for sepal length where the data values are split into
species groups; use as template the first example in the “boxplot” help file.

� Now produce a similar box-and-whisker plot for all four morphological measurements,
arranged in two rows and two columns. First specify the graphical parameter that
arranges the plots two by two.

Karline Soetaert and Filip Meysman 57

Ex06: Estuarine morphology

The Westerschelde estuary has a trumpet-shaped morphology, i.e. its cross-sectional area
increases in a sigmoidal fashion from Rupelmonde near the river towards Vlissingen near the
sea.

The estuary is 100 km long, and the cross-sectional surface, A(x), in m2, can be approximated
with the following equation:

A(x) = Ar + dA ∗ xp

xp + ks
p

where dA = As − Ar, p = 5, ks = 50000 m, Ar = 4000m2, As = 76000m2. Here Ar and As
are the cross-sectional surfaces at the boundary with the river and the sea respectively. Plot
the cross-surface area of the Scheldt estuary, as a function of distance from the river

Ex07: North American Rivers The data set rivers gives the length, in miles, of 141 “major”
rivers in North America, as compiled by the US Geological Survey.

Check the contents of rivers. Create a new vector, called rivers.km, which has the length
of the rivers, in kilometres. One mile = 1.609344 km.

Make a histogram of the length of the rivers; use 20 cells for the histogram.

The rivers Scheldt and Seine are respectively 350 and 777 km long, while the Amazon river
is 4000 miles long. Add this information to the previous histogram. You can use a symbol at
the correct position (points), or write the name of the river at the correct position (text).
Use your imagination!

Ex08: CO2 and grasses

The data set CO2 lists the CO2 uptake rates from a grass species as a function of ambient
carbon dioxide concentration, and for two different temperature treatments.

Look at the contents of this data set.

Use a boxplot to visually inspect whether there is an effect of (1) ambient concentration and
(2) temperature treatment on the CO2 uptake rate.

58 Scientific computing in R

8. Matrix algebra

A matrix is a combination of vectors with the same length.

8.1. Creating a matrix

Matrices can be created in several ways:

� By means of the R function matrix.

� By means of the R function diag which constructs a diagonal matrix.

� The functions cbind and rbind add columns and rows to an existing matrix, or to
another vector.

Consider the matrix 1 4 7

2 5 8

3 6 9

To enter this matrix in R, we first write it as a single vector, going down each column, i.e., the
data are: c(1, 2, 3, 4, 5, 6, 7, 8, 9). The matrix has 3 rows (nrow) and 3 columns
(ncol). We can create the matrix, and put the result in variable MAT as follows:

MAT <- matrix(nrow = 3, ncol = 3, data = 1:9)

Built-in functions operate on matrices in an element-wise fashion (like they operate on vec-
tors). The next two statements create a matrix A, display the matrix followed by the square
root of its elements:

A <- matrix(nrow = 2, data = 1:4)

A

[,1] [,2]

[1,] 1 3

[2,] 2 4

sqrt(A)

[,1] [,2]

[1,] 1.000000 1.732051

[2,] 1.414214 2.000000

By default, R fills a matrix column-wise (see the examples above). However, this can easily
be overruled, using the argument byrow:

(M <- matrix(nrow = 4, ncol = 3, byrow = TRUE, data = 1 : 12))

Karline Soetaert and Filip Meysman 59

[,1] [,2] [,3]

[1,] 1 2 3

[2,] 4 5 6

[3,] 7 8 9

[4,] 10 11 12

The unity matrix (I) is created using the R-function diag:

diag(1, nrow = 2)

[,1] [,2]

[1,] 1 0

[2,] 0 1

The names of columns and rows are set as follows:

rownames(A) <- c("x", "y")

colnames(A) <- c("c", "b")

A

c b

x 1 3

y 2 4

Note that we also use the c() function to create these names ! Row names and column names
are in fact vectors containing “strings”.

Matrices can also be created by combining (binding) vectors, e.g. rowwise:

V <- 0.5 : 5.5

sqrt.V <- sqrt(V)

rbind(V, sqrt.V)

[,1] [,2] [,3] [,4] [,5] [,6]

V 0.5000000 1.500000 2.500000 3.500000 4.50000 5.500000

sqrt.V 0.7071068 1.224745 1.581139 1.870829 2.12132 2.345208

As one can see, the names of the vectors are automatically assigned as row names.

8.2. Arrays

Arrays are multidimensional generalizations of matrices. We will not often use them, and so
they are given here only for completeness. A multi-dimensional array is created as follows:

AR <-array(dim = c(2, 3, 2), data = 1)

In this case AR is a 2*3*2 array, and its elements are all 1.

8.3. Dimensions

The commands

60 Scientific computing in R

> length(V)

> dim(A)

> ncol(M)

> nrow(M)

will return the dimension of the matrix or array A, and the number of columns and rows of
matrix M respectively.

8.4. Selecting and extracting elements

To select subsets of a matrix, we can either

� specify the numbers of the elements that we want (simple indexing)

� specify a vector of logical values (TRUE/FALSE) to indicate which elements to include
(TRUE) and which not to include (FALSE). This uses logical expressions

As was the case with vectors, the elements of a matrix or array are indexed using the square
brackets [] operator. Accordingly, individual elements can be extracted from a matrix A by
using A[i,j], which extracts the element in the ith row and jth column of A.

M <- matrix(nrow = 4, ncol = 3, byrow = TRUE, data = 1:12)

M[1, 2]

[1] 2

Sometimes we want to extract an entire column or entire row from a matrix. Assume that
we want to see the entire second column of matrix M. One way to request that information is:

M[1:4, 2]

[1] 2 5 8 11

But it is very easy to make mistakes this way. A much more elegant way is to leave the row
indices blank, which tells R that it needs to select all elements.

M[, 2]

The following statement selects the first and third row of M:

M[c(1, 3),]

[,1] [,2] [,3]

[1,] 1 2 3

[2,] 7 8 9

Karline Soetaert and Filip Meysman 61

and the entire last column of M.

M[,ncol(M)]

[1] 3 6 9 12

If an index is omitted, then all the rows (1st index omitted) or columns (2nd index omitted)
are selected. In the following:

M[,2] <- 0

M[1:3,] <- M[1:3,] * 2

first all the elements on the 2nd column (1st line) of M are zeroed and then the elements on
the first three rows of M multiplied with 2 (2nd line).

8.5. Calculations with matrices

Matrix algebra is very simple in R . Practically everything is possible! Here are the most
important R functions that operate on matrices:

� %*% Matrix multiplication

� t(A) transpose of A

� diag(A) diagonal of A

� solve(A) inverse of A

� solve(A,B) solving Ax = B for x

� eigen(A) eigenvalues and eigenvectors of A

� det(A) determinant of A

For instance the following first inverts matrix A (solve(A)), and then multiplies the inverse
with A , giving the unity matrix:

(A <-matrix(nrow = 2, data = c(1, 2, 3, 4)))

[,1] [,2]

[1,] 1 3

[2,] 2 4

solve(A) %*% A

[,1] [,2]

[1,] 1 0

[2,] 0 1

62 Scientific computing in R

whilst t(A) will transpose matrix A (interchange rows and columns).

t(A)

[,1] [,2]

[1,] 1 2

[2,] 3 4

The next set of statements will solve the linear system Ax = b for the unknown vector x:

b <- c(5, 6)

solve(A, b)

[1] -1 2

Finally, the eigenvalues and eigenvectors of A are estimated using the R function eigen. This
function returns a list that contains both the eigenvalues ($values) and the eigenvectors
($vectors), (the columns).

eigen(A)

$values

[1] 5.3722813 -0.3722813

$vectors

[,1] [,2]

[1,] -0.5657675 -0.9093767

[2,] -0.8245648 0.4159736

8.6. Exercises

Matrix algebra exercise 1

� Use the R function matrix to create a matrix with the following contents:[
3 9

7 4

]

� display it to the screen

� Use R function matrix to create a matrix called “A”: 1 1/2 1/3

1/4 1/5 1/6

1/7 1/8 1/9

Karline Soetaert and Filip Meysman 63

– Take the transpose of A.

– Create a new matrix, B, by extracting the first two rows and first two columns of
A. Display it to the screen.

� Use diag to create the following matrix, called “D”: 1 0 0

0 2 0

0 0 3

� Use cbind and rbind to augment this matrix, such that you obtain:

1 0 0 4

0 2 0 4

0 0 3 4

5 5 5 5

It is simplest to do this in two statements (but it can be done in one!)

� Remove the second row and second column of the previous matrix

Matrix algebra exercise 2

� Use the R function matrix to create the matrices called A and B:

A =

 1 2 3

6 4 1

−2 1 −1

, B =

 1 4 7

2 5 8

3 6 9

� Take the inverse of A and the transpose of A.

� Multiply A with B.

� Estimate the eigenvalues and eigenvectors of A.

� For a matrix A, x is an eigenvector, and λ the eigenvalue of a matrix A, if A · x = λ · x.
Test it!

Matrix algebra exercise 3

� Create a matrix, called P:
0 0.0043 0.1132 0

0.9775 0.9111 0 0

0 0.0736 0.9534 0

0 0 0.0452 0.9804

64 Scientific computing in R

� What is the value of the largest eigenvalue (the so-called dominant eigenvalue) and the
corresponding eigenvector?.

� Create a new matrix, T, which equals P, except for the first row, where the elements are
0.

� Now estimate N = (I − T)−1, where I is the identity matrix 3.

System of linear equations

� Solve the following system of linear equations for the unknown xi:

3x1 + 4x2 + 5x3 = 0

6x1 + 2x2 + 7x3 = 5

7x1 + x2 = 6

� You will first need to rewrite this problem in the form: Ax = B, where A contains
the coefficients, x the unknowns, and B the right-hand side values. Then you solve the
system, using R-function solve

� Check the results (i.e. is Ax = B ?)

3Note: this is a stage-model of a killer whale (Caswell 2001). The eigenvalue-eigenvectors estimate the rate
of increase and stable age distribution, the matrix N contains the mean time spent in each stage.

Karline Soetaert and Filip Meysman 65

9. Roots of functions

9.1. The root-finding problem

The goal of a root-finding procedure is to find a value for x such that

f(x) = 0

for a given function f . This value of x is called a“root”of the function f . For simple functions,
it is often possible to find the root in an analytical way. For example, one can easily see that the
root of the function f(x) = 3−x2 must be equal to x =

√
3 or x = −

√
3. If we plug one of these

two values for x in the formula, say x =
√

3, we obtain f(3) = 3−(
√

3)2 = 0. Mathematically,
the root finding problem is equivalent to the solution of an algebraic equation. In the example
above, we need to find the value of x for which the non-linear equation 3− x2 = 0 holds.

In the case of simple functions, one is often able to provide an exact and explicit expression
for the value of the root. However, for more complex and especially non-linear functions, such
an analytical solution procedure is not possible, and hence, one must turn to numerical root
solving methods. Suppose we need to determine the root of the non-linear function

f(x) = cos(x)− 2x

Graphically, the root represents the location where the function f(x) intersects the x-axis. So
to start, it is always a good idea to plot the function over the interval where one expects the
root to be found:

curve(expr = cos(x)-2*x, from = -2, to = 2)

abline(h = 0, lty = 2)

The first statement creates the plot by means of the curve() command (see Graphics chapter),
while the second line adds the x-axis to the plot. This figure shows that there indeed exists
a single root within the [-2, 2] interval located approximately at x = 0.5.

There are various algorithms for numerical root-finding. A common feature is that they all
work “iteratively”: they start from an initial guess, and subsequently they produce a sequence
of values that (hopefully) converges towards the root (within some tolerance - see below). In
each iteration step, a new and better estimate for the root is computed based on the previously
obtained value, thus moving closer and closer to the root.

A number of different algorithms have been developed for root-finding, and each comes with
its own intricacies and application domain. The best known methods are the bisection, secant
and Newton-Raphson methods.

9.2. The bisection method

The bisection method is a basic root-finding method. It is simple and robust, but also rather
slow. In real life problems, other methods will be preferred that are numerically more efficient.
However, the bisection method nicely illustrates how a root algotithm works, and for this
reason, we discuss it here. We start from an interval [a, b] for which we know that it contains
a root. The bisection method then divides this interval in two and selects the subinterval in

66 Scientific computing in R

−2 −1 0 1 2

−
4

−
2

0
2

x

co
s(

x)
 −

 2
 *

 x

Figure 11: Function drawn with curve and the root of the function plotted - see text for
R-code

which a root must lie. This procedure is repeated until the interval is sufficiently small (i.e.
smaller than some preset tolerance). The bisection method can be implented by following
function:

bisection <- function(f, interval, tol=.Machine$double.eps^0.25, maxiter=1000)

{

a <- interval[1]

b <- interval[2]

if (a >= b) stop("startpoint a must be smaller than endpoint b")

if (f(a)*f(b) >= 0) stop("f(a) and f(b) must have a different sign")

i <- 1

while (i <= maxiter) #limit iterations to prevent infinite loop

{

mid <- (a + b)/2 # new midpoint

estim.prec <- (b - a)/2 # estimated precision

if (f(mid) == 0 | estim.prec < tol) # root found

{

if (f(mid) == 0) estim.prec <- 0

result <- list(root=mid,f.root=f(mid),iter=i,estim.prec=estim.prec)

return(result)

}

i <- i + 1 # step counter increases

if (sign(f(mid)) == sign(f(a))) a <- mid else b <- mid

}

stop(paste("Bisection method failed: max number of steps",maxiter,"exceeded"))

}

The bisection method requires four different types of input:

� f: the function for which the root needs to be found

Karline Soetaert and Filip Meysman 67

� interval: the interval specified by the start point a and the end point b. The start
point must be smaller than the end point, and the function f needs to have an opposite
sign at these two points.

� tol: the requested tolerance on the root. If no value is specified, we use a default value
based on the machine precision .Machine$double.eps

� maxiter: the maximum number of iterations. This criterion is specified to prevent that
the algorithm gets stuck in an infinite loop.

At each step the bisection method calculates the midpoint of the interval and the function
value at that midpoint. Unless the midpoint is itself a root (which is very unlikely, but
possible) there are two possibilities: either f(a) and f(mid) have opposite signs and so the
interval [a,mid] brackets the root, or f(mid) and f(b) have opposite signs and the interval
[mid,b] brackets the root. The method selects the new interval to be used in the next step,
so the interval that contains the root is halved.

It should be emphasized that the value of the root returned by a numerical root-finding
method is always an approximation up to a certain accuracy. This accuracy, or equally the
“error” tolerated, must be specified a priori by the user. In bisection, this is done via the
facultative tol argument. The root finding iteration is stopped when successive changes of x
are smaller than tol.

The bisection method generates four different types of output:

� root: the estimated value of the root

� f.root: the function value evaluated at the root

� iter: the number of iterations used

� estim.prec: an estimate of the precision for the root

test.f <- function(x) return(cos(x)-2*x)

(result <- bisection(f = test.f, interval = c(-2, 2)))

$root

[1] 0.4501343

$f.root

[1] 0.0001201335

$iter

[1] 16

$estim.prec

[1] 6.103516e-05

In theory, the function value f.root should be zero at the root, but since we are employing
a numerical procedure, such absolute accuracy is not possible. Accordingly, the $f.root

value should be sufficiently close to zero (compare $f.root to the function values at the start

68 Scientific computing in R

and end of the search interval). The $iter value gives the number of iterations (or steps)
that were needed to find the root, while $estim.prec provides an estimate of the precision
with which the root is found. Accordingly, the last two decimal digits printed for $root

are not meaningful, and so, the final outcome of the root calculation should be presented as
0.45013± 0.00006.

For most purposes one should not bother about the value of the tolerance tol, and use the
default value based on the machine precision. However, for some applications, it can be useful
to be less accurate, and hence, obtain a faster result with less iterations. Try the following.

test.f <- function(x) return(cos(x) - 2*x)

bisection(f = test.f, interval = c(-2, 2), tol = 0.01)

How do the root value and the required number of iterations change?

9.3. Roots of one-dimensional functions: uniroot

As noted above the bisection method is not very numerically efficient. In general, there is a
trade-off between robustness (making sure that the algorithm converges towards the root) and
the speed (miminizing the number of iterations and calculations to obtain the root). Robust
methods are typically slow, while for fast methods, one is less sure that they will converge.

A more sophisticated root-finding method is implemented in R by the function uniroot

from the stats package. This method will find roots for one-dimensional functions. For
reference, the algorithm underlying uniroot() is Brent’s method, which is a popular but
complicated root-finding algorithm combining the bisection method, the secant method and
inverse quadratic interpolation (Brent, 1973). In this hybrid method, the idea is to use the
secant method or inverse quadratic interpolation if possible, because they converge faster, but
to fall back to the more robust bisection method if necessary.

The statement below applies the uniroot method to our problem. As arguments one should
provide an R function for which the root needs to be determined and the interval in which
the root should be found. Here this function is called test.f (see Chapter on R functions).
For the method to work, there should be at least one root in the interval.

test.f <- function(x) return(cos(x) - 2*x)

(result <- uniroot(f = test.f, interval = c(-2, 2)))

$root

[1] 0.4501842

$f.root

[1] -1.472704e-06

$iter

[1] 6

$estim.prec

[1] 6.103516e-05

Karline Soetaert and Filip Meysman 69

The uniroot function returns a list with several output values in a similar way as teh
bisection function. The most important one is the root itself ($root), which is 0.4501842.
The value $f.root provides the function value at the root, which is −1.47e−6. Note that the
number of iterations (6) is much smaller when compared to the bisection method.

9.4. Multiple roots

The uniroot function only gives an unambiguous result when there is a only single root
within the given interval. When there are more roots, the answer can be ambiguous. To see
this, try:

f.root <- function (x)

return(x^3 - 2*x)

uniroot(f = f.root, interval = c(-2, 2))$root

uniroot(f = f.root, interval = c(-10, 2))$root

uniroot(f = f.root, interval = c(-5, 2))$root

The polynomial function f(x) = x3 − 2 ∗ x has three roots: −
√

2, 0 and +
√

2. Depending
on the search interval that one chooses, a different root is selected by uniroot. Accordingly,
when dealing with functions that have multiple roots, such as polynomials, one must be
careful. There exist specific root-finding algorithms that determine all roots of a polynomial,
which are not further discussed here. In R , this is done by the polyroot() function - consult
its help file for more information. It is simpler to use R function uniroot.all from the R
package rootSolve:

f.root <- function (x)

return(x^3 - 2*x)

uniroot.all(f = f.root, interval = c(-2, 2))

[1] 0.000000 -1.414214 1.414214

9.5. Roots in multi-dimensional problems

For root finding in multi-dimensional problems, one should consult the methods in the package
rootSolve.

9.6. A real world application: the pH of natural waters

The pH is a master variable for the chemical composition of natural waters. The pH of natural
waters is most influenced by the carbonate buffer system, which protects the water against
large pH changes. In ocean acidification studies, it is crucial to fully determine the speciation
of the water, that is, the concentration of all seven chemical species involved in the carbonate
buffer system. This means that one needs to determine the concentration of dissolved carbon
dioxide ([CO2]), bicarbonate ([HCO−3]), carbonate ([CO2−

3]) and protons ([H+]), as well the
dissolved inorganic carbon (DIC) concentration, the titration alkalinity (TA) and the pH. The
latter three quantities are defined as:

70 Scientific computing in R

DIC = [CO2] + [HCO−3] + [CO2−
3]

TA = [HCO−3] + 2[CO2−
3]− [H+]

pH = − log([H+])

From the theory of aquatic chemistry, it is known that two out of the total set of seven
variables need to be known to fully determine the speciation. When the proton and DIC
concentrations are known, one can directly calculate the concentration of the proton and
carbonate species, and subsequently, the titration alkalinity, by using the relations (Zeebe
and Wolf-Gladrow 2003)

[CO2] =
[H+] · [H+]

[H+] · [H+] +KC1 · [H+] +KC1 ·KC2
·DIC

[HCO−3] =
KC1 · [H+]

[H+] · [H+] +KC1 · [H+] +KC1 ·KC2
·DIC

[CO2−
3] =

KC1 ·KC2

[H+] · [H+] +KC1 · [H+] +KC1 ·KC2
·DIC

However, in chemical oceanographic studies, one usually determines the DIC and TA, because
these are more acccurately measured. Accordingly, the challenge is to calculate the other
species concentrations from DIC and TA. This speciation problem essentially comes down to
a root-finding problem, where one needs to solve for the proton concentration [H+] (or the
pH value). The trick is to estimate the alkalinity based on the known DIC concentration
and a guess of the proton concentration, and compare that with the measured value for the
alkalinity. If both are equal within a preset tolerance level, the correct proton concentration
has been found.

In the implementation below, the dissociation constants of the carbonate system (kc1, kc2)
are first calculated as a function of temperature and salinity. This is done using the R package
AquaEnv, which is dedicated to aquatic chemistry and has to be loaded first (require). All
concentrations are in µmol kg−1, while the dissociation constants are in mol kg−1, so we need
to introduce a conversion factor of 106.

We then define a function (pHfunction) for which the root has to be found. In this func-
tion we estimate the alkalinity, based on the guess of pH, the dissociation constants (kc1,
kc2) and the measured DIC concentration. The difference between this calculated alkalinity
(Estimated.TA) and the measured alkalinity is then returned. If the pH is correctly esti-
mated, then the estimated and measured alkalinity should be equal. So, to find the pH, we
need to find the root of the pHfunction within an interval between 0 and 12 (which covers
the whole range found in nature).

DIC.measured <- 2130e-6

TA.measured <- 2350e-6

require(AquaEnv)

K1 <- K_CO2(S = 35, t = 20, p = 0)[1]

K2 <- K_HCO3(S = 35, t = 20, p = 0)[1]

pHfunction <- function(pH, K1, K2, DIC, TA)

{

Karline Soetaert and Filip Meysman 71

H <- 10^(-pH)

HCO3 <- H*K1 /(H*K1 + H*H + K1*K2)*DIC

CO3 <- K1*K2 /(H*K1 + H*H + K1*K2)*DIC

Estimated.TA <- HCO3 + 2*CO3 - H

return (Estimated.TA - TA)

}

uniroot(pHfunction, interval = c(0, 12),

K1 = K1, K2 = K2, DIC = DIC.measured, TA = TA.measured)

$root

[1] 8.191469

$f.root

[1] 4.151739e-10

$iter

[1] 7

$estim.prec

[1] 6.103516e-05

9.7. Exercises

Ex 01: Roots of simple functions

Use the function uniroot to find the roots of:

� the function f(x) = x2−
√

(x)+0.1 in the interval [0.5, 2]. (Answer: 0.9298 +/- 0.0005)

� the equation ex = 4x2 in the interval [0, 1]. (Answer: 0.7148 +/- 0.0005)

Each time, first draw the function curve. First, use a tolerance of 0.001. Afterwards, calculate
the root once more with the higher tolerance of 0.00001. How strongly does its value change?

Ex 02: Function evaluation

Find the value of x for which the function f(x) = x2−
√

(x) becomes equal to 2. Use uniroot
and explore the interval [0.5, 2.5]. (Answer: 1.83118 +/- 0.00006)

Ex 03: Dangerous global warming

Under the bussiness as usual scenario, the predicted increase in the mean global temperature
over the 21 th century is given by the function

∆T = a ∗ (t− tref) + b ∗ (t− tref)2

where the a = 0.0264 and b = 2.1E− 4. The year 1990 is the reference time tref of the Kyoto
protocol. When do we exceed the level of 2 degree warming, after which climate change is
considered dangerous? (Answer: the year 2043).

Ex 04: The Platt function

72 Scientific computing in R

The response of photosynthesis to different light intensities is a critical component of ecosys-
tem models. This relation is given by the PI curve (photosynthesis-irradiance), which is an
empirical relationship that predicts the rate of photosynthesis P (in mg C (mg Chl)-1 h-1) as
a function of the solar irradiance I (in µmol photons m-2 s-1). An often used PI curve is the
so-called Platt model

P (I) =
(

1− exp
(
−αI
Pmax

))
exp

(
−βI
Pmax

)
The quantities α, β, and Pmax are parameters. Typical values for these these parameters are
α = 0.02, β = 0.01, and Pmax = 5

Tasks:

� Create an R function ”Platt” that implements the above formula. Use the above pa-
rameter values as default arguments in this R function.

� Check your formula. For I = 100 and using the default values of the parameters, you
should obtain the value of P = 0.2699191.

� Make a plot of the P-I curve over the range or I from 0 to 500.

� Find the irradiance for which the rate of photosynthesis is equal to 0.2 (Answer: 64.6)

Ex 05: A two-dimensional problem

Solve the equations 1000 = y ∗ (3 + x) ∗ (1 + y)4 for y and with x varying over the range from
1 to 100. Plot the root as a function of x.

Tip: first make a sequence of x-values, then loop over each “x” value, each time estimating
the root and putting it in a vector.

Ex 06: Ocean acidification

The pH of natural waters can be estimated based on the measured alkalinity and pCO2, that
is the partial pressure of CO2. To solve this equation, the simplest solution is to use another
(equivalent) way to write the relationships between the DIC species:

[HCO−3] = KC1 ·
[CO2]

[H+]

[CO2−
3] = KC2 ·

[HCO−3]

[H+]

pCO2 relates to [CO2] through Henrys constant, Kh, which can also be estimated as a function
of salinity, temperature and pressure, using R-package seacarb:

pCO2 =
[CO2]

Kh

� Estimate the pH at equilibrium with alkalinity 2300 µmol kg−1 and the current pCO2

of 360 ppm.

Use package seacarb to estimate the dissociation constants and Henrys constants at
temperature 20◦C, salinity 0, and pressure 0. (A: pH = 8.19)

Karline Soetaert and Filip Meysman 73

� The Intergovernmental Panel on Climate Change predicts for 2100 an atmospheric CO2

concentration ranging between 490 and 1250 ppmv, depending on the socio-economic
scenario (IPCC, 2007). These increases of pCO2 make the water more acid. Make a
plot of pH as a function of these increased atmospheric pCO2 levels. (Assume that the
pCO2 of the ocean is at equilibrium with the atmospheric pCO2). What is the maximal
drop of pH ? (A: at pCO2 of 1250 ppmv, pH = 7.68).

74 Scientific computing in R

●

●

●

●

●

●

●

●

●

●

2 4 6 8 10

3
4

5
6

7
8

9

interpolation,smoothing

x

y

●
●
●
●
●
●
●
●
●
●
●

●

●

●

●

●

●

●

●

●

●
●
●
●
●
●
●
●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●
●
●
●
●
●
●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

spline
approx
smooth.spline

Figure 12: smoothing and interpolation - see text for R-code

10. Interpolation, smoothing and curve fitting

10.1. Interpolation and smoothing

Interpolating and smoothing in R can be done in several ways:

� approx linearly interpolates through points

� spline uses spline interpolation, which is smoother

� smooth.spline smoothens data sets; this means that it does not connect the original
points.

The use of these functions is exemplified in the following script and corresponding output:

x <- 1 : 10

y <- c(9, 8, 6, 7, 5, 8, 9, 6, 3, 5)

plot(x, y, pch = 16, cex = 2, main = "interpolation,smoothing")

lines (spline(x, y, n = 100), lty = 1)

points(approx(x, y, xout = seq(from = 1, to = 10, by = 0.1)), pch = 1)

lines (smooth.spline(x, y), lty = 2)

legend("bottomleft", lty = c(1, NA, 2), pch = c(NA, 1, NA),

legend = c("spline", "approx", "smooth.spline"))

10.2. Curve fitting

R also has several curve fitting procedures. Depending on whether the function to be fitted
is linear, or non-linear, you may use:

Karline Soetaert and Filip Meysman 75

� lm and glm for fitting linear models and generalised linear models

� nls, nlm, optim, constrOptim for nonlinear models.

As an example, we now fit the US population density values, at 10-year intervals, with the
logistic growth model (see previous chapter). The model was:

N(t) =
K

1 + [K−Nt0
Nt0

] · e−a·(t−t0)
,

and the data:

1900 1910 1920 1930 1940 1950 1960 1970 1980

76.1 92.4 106.5 123.1 132.6 152.3 180.7 204.9 226.5

We start by inputting the data.

year <- seq(from = 1900, to = 1980, by = 10)

pop <- c(76.1, 92.4, 106.5, 123.1, 132.6, 152.3, 180.7, 204.9, 226.5)

The simplest method for non-linear curve fitting is by using R function nls.

This functions requires as input the formula (y ~ f (x,parameters)) and starting values of
the parameters.

In the example, y are the population values, f is the logistic growth formulation.

As starting conditions, we use: K = 500, N0 = 76.1, a = 0.02.

fit <- nls(pop ~ K/(1+(K-N0)/N0 * exp(-a*(year-1900))),

start = list(K = 500, N0 = 76.1, a = 0.02))

We end the fitting by printing a summary of the fitting parameters, which shows the estimates
of the parameters and their standard errors. Clearly, it is not possible to obtain reliable
estimates of the value of K based on the data.

summary(fit)

Formula: pop ~ K/(1 + (K - N0)/N0 * exp(-a * (year - 1900)))

Parameters:

Estimate Std. Error t value Pr(>|t|)

K 1.008e+03 8.932e+02 1.129 0.30210

N0 7.866e+01 2.531e+00 31.084 7.36e-08 ***

a 1.550e-02 2.505e-03 6.188 0.00082 ***

Signif. codes: 0 Ś***Š 0.001 Ś**Š 0.01 Ś*Š 0.05 Ś.Š 0.1 Ś Š 1

Residual standard error: 3.685 on 6 degrees of freedom

Number of iterations to convergence: 6

Achieved convergence tolerance: 4.301e-06

76 Scientific computing in R

The values of the coefficients themselves are retrieved using R-function coef.

coef(fit)

K N0 a

1.008227e+03 7.866365e+01 1.550343e-02

10.3. Exercises

Smoothing

An anemometer measures wind-velocity at three hourly intervals. On a certain day, these
velocities are: 5, 6, 7, 9, 4, 6, 3, 7, 9 at time 0, 3, ... 24 o’clock respectively. In order to
estimate air-sea exchange, we need hourly measures.

Tasks:

� Interpolate the three-hourly measurements to hourly measurements.

� Make a plot of the interpolated values

Fitting

Primary production is measured by 14C incubations from phytoplankton samples, at different
light intensities. The data are:

ll <- c(0., 1, 10, 20, 40, 80, 120, 160, 300, 480, 700)

pp <- c(0., 1, 3, 4, 6, 8, 10, 11, 10, 9, 8)

Fit the resulting production estimates (pp), as a function of light intensity (ll) with the
3-parameter Eilers-Peeters equation. The primary production is calculated as:

pp = pmax ·
2 · (1 + β) · I/Iopt

(I/Iopt)
2 + 2 · β · I/Iopt+ 1

where I is light and pmax, β and Iopt are parameters.

� First plot primary production (pp) versus light (ll). Use large symbols.

� Then use R-function nls to fit the model to the data

� Add the best-fit line to the graph. (note: use coef to retrieve the best parameter
values).

Karline Soetaert and Filip Meysman 77

11. Differential equations

11.1. Dynamic models

Model formulation in the natural sciences

In the natural sciences, the challenge is often to describe or predict how a given environmental
variable will evolve over time. Depending on the problem at hand, this variable can have
many different meanings. For example, one could be interested in future evolution of the
temperature of the atmosphere (as in the IPCC models of global warming), the seasonal
fluctuation in the oxygen concentration in a lake (as described in biogeochemical ecosystem
models), or the year-to-year fluctuations in the density of lions in the Serengeti National park
(as in the population models used by conservation biologists). The mathematical models that
describe such changes in environmental variable are called dynamic models, because they
have the time t as the independent variable. The models themselves are based on differential
equations, which are typically of the form:

dC
dt = f (a, b(t), C) = f (C, t)

In this, t represents the time and C is the state variable. Furthermore, a is a parameter that
remains constant in time, while b(t) is a function that varies with time (a so-called forcing
function). This equation is termed a differential equation because it contains the derivative
dC/dt, which represents the so-called rate of change of the state variable C. The specific form
of the function f depends on the physical, chemical and biological processes that influence C.

The determination of how the function f should look like, is the subject of the process of model
development. In essence, one or more suitable differential equations need to be derived from
the general balance equations of mass, momentum and/or energy, which form the theoretical
pillars of any model in the natural sciences. How this is exactly done will not be considered
here, but is treated in detail in the course on Environmental Modelling.

An example: Transformation of an organic pollutant in a lake

For now, we can assume that the model has already been developed, and so, we know how
the differential equation(s) will look like. For example, imagine that we want to study how a
lake responds to the input of an organic pollutant. This pollutant is brought in by the river,
and decays within the lake (for example, under the influence of UV radation). Based on mass
balance considerations, we know that the time evolution of the pollutant concentration C can
be described by the differential equation

V · dCdt = F (t) · (Cin − C)− k · V · C

In this, V represents the volume of the lake (m3), Cin is the concentration of the pollutant
in the inflowing river water (mol m−3), and k is the decay rate constant of the pollutant
(s−1). The quantity F (t) is the flow rate of the river that discharges into the lake upstream
(m3 s−1). It is made dependent on time as this flow rate strongly varies over the year. After
dividing both sides by the volume V , this equation can be brought in the same form as the

78 Scientific computing in R

differential equation above:

dC
dt = D(t) · (Cin − C)− k · C

where D = F/V is called the dilution rate of the lake. In modelling theory, the following
terminology is used:

� C is the dependent variable (or state variable),

� t is the independent variable,

�
dC
dt is the rate of change (the derivative of the dependent variable with respect to the
independent variable),

� k and Cin are parameters (do not vary with time, the independent variable),

� D(t) is a forcing function (varies with time).

The specification of the differential equation by itself is not enough to arrive at a complete
model statement. We also need to specify the initial conditions. In our case, this is the
pollutant concentration C0 in the lake at some initial time t0.

C(t = t0) = C0

The model formulation is now complete. The goal is now to find a suitable expression for
the pollutant concentration as a function of time, i.e., C(t). This requires the solution of the
above differential equation given the above initial condition.

11.2. Types of differential equations

Autonomous versus non-autonomous differential equations

When the function f does not depend on the time t, the differential equation is called au-
tonomous. In other words, an autonomous differential equation only features constant pa-
rameters, and does not contain forcing functions. To illustrate this, consider following two
different models of the same lake:

dC
dt = D0 (Cin − C)− k · C
dC
dt =

(
D0 +Dfluc sin

(
2π tτ

))
(Cin − C)− k · C

The first model describes a lake with a constant inflow, and the associated differential equation
becomes autonomous. The second model describes a lake where the inflow varies with a regular
seasonal cycle. The parameter Dfluc describes the magnitude of the discharge fluctuation,
and τ the time period of the cycle. The associated differential equation explicitly features the
time t and so it is no longer autonomous.

Linear versus non-linear differential equations

When the function f is a linear function of the variable C, the differential equation is termed
linear. Linear dynamic models have the general form:

Karline Soetaert and Filip Meysman 79

dC
dt = a1(t) · C + a0(t)

When a0(t) and a1(t) are constant (independent of time), the equation is said to be au-
tonomous (as already noted above). When a0(t) = 0, the equation is said to be homogeneous.
For example, consider following variants of our lake model, which differ in the consumption
term of the pollutant:

dC
dt = D · (Cin − C)− k · C
dC
dt = D · (Cin − C)− k · C2

dC
dt = D · (Cin − C)−R · exp(−r · t)

The first differential equation is autonomous and linear. The second equation is autonomous
and non-linear (because it features the quadratic consumption term k·C2). The third equation
is again linear but is no longer autonomous as the consumption term now features the time
t (note that the linearity only applies to the dependent variable C and not the independent
variable t). The (non)-linearity of a dynamic model depends on the processes that are playing
and the level of detail with which these processes are modelled. Linear, autonomous differen-
tial equations always have an analytical solution (see below). Non-linear or non-autonomous
differential equations sometimes allow an analytical solution, but this is only rarely the case.
If not, then a numerical solution must be found.

Ordinary versus partial differential equations

When the function f only contains the time t and the state variable C, the resulting equation
is called an ordinary differential equation (ODE). When the function f also contains one or
more differentials of the state variable C with respect to a spatial coordinate, the resulting
equation is called a partial differential equation (PDE).

The use of ODE’s versus PDE’s to describe a natural system depends on the level of detail one
wants to include in the model. For example, the concentration in a lake can be described with
varying spatial detail. If the lake is strongly mixed, concentrations will not exhibit spatial
gradients, and so the lake can be considered as one homogeneously mixed volume. In this
case, the lake can be described by a single concentration C(t), which only depends on time.
However, when the lake is not fully mixed, more complex descriptions of the concentration in
the lake are needed. Following cases are possible:

� 0D-model: C(t) only dependent on time (ODE case),

� 1D-model: C(t, z) depends on time and the spatial coordinate (e.g. z = depth in a
lake),

� 2D-model: C(t, x, z) depends on time and two spatial coordinates (e.g. z = depth, x =
distance along the axis of a river)

� 3D-model: C(t, x, y, z) depends on time and three spatial coordinates (e.g. full three-
dimensional model of a lake)

The following equations describe the exactly same lake, but with a different level of detail:

80 Scientific computing in R

dC
dt = D · (Cin − C)− k · C
dC
dt = Kz

d2C
dz2
− k · C

dC
dt = Kx

d2C
dx2

+Ky
d2C
dy2

+Kz
d2C
dz2
− k · C

The first equation is an ODE or ordinary differential equation and describes how the average
concentration in the lake will change through time (0D-model). The second equation com-
prises a PDE or partial differential equation, and describes how the concentration will change
with time as well as with the depth of the lake (1D-model). The third equation is also a PDE,
but now describes the concentration varies in all three directions (full 3D-model).

Note that for the solution of a PDE problem, one needs a set of boundary conditions in
addition to the initial conditions. Here, we only focus on the solution of ODE problems.
Accordingly, the implementation of boundary conditions and the solution of PDEs is for a
more advanced course. Intrinsically however, it is similar to the solution of ODEs.

11.3. Time-dependent solution: Analytical approach

The solution of a dynamic model comes down to the determination of how the state variable
C will evolve as a function of the time t. As already noted above, the solution of a dynamic
model comes down to the solution of a given differential equation combined with some suitable
initial conditions. The time-dependent solution of a differential solution is also termed the
transient solution.

When the differential equation is relatively simple (such as in the case of a linear ODE), one
can find a so-called analytical solution. This means that an explicit mathematical expression
is available for the state variable C(t). The theory of differential calculus provides a whole
series of methods to find such analytical solutions (this is beyond the scope of our course here).
So for our purposes here, an analytical solution is one that can be found in mathematical
textbooks. Let’s consider again pour lake model,

dC
dt = D · (Cin − C)− k · C
C(t = t0) = C0

This is a linear ODE with constant parameters, and for this specific type of ODEs, one can
prove that an analytical solution must always exist. The specific analytical solution for the
above problem is:

C(t) = D
D+kCin +

(
C0 − D

D+kCin

)
· exp (−(D + k) · t)

One can indeed verify that this expression is a true solution for the above model (to this
end, substitute the analytical solution into the differential equation and the initial condition).
To see how the concentration will evolve over time, one simply needs to plot the analytical
solution in a graph.

Parameters

D<-2; C_in<-1; k<-1; C_0<-2

Time sequence vector

Karline Soetaert and Filip Meysman 81

0.0 0.1 0.2 0.3 0.4 0.5

0.
0

0.
5

1.
0

1.
5

2.
0

Analytical solution

time

st
at

e
va

ria
bl

e

Figure 13: Plot of analytical solution of an ODE

time.seq <- seq(from = 0, to = 0.5, by = 0.1)

Analytical solution as a vector expression

C.star <- D/(D+k)*C_in

C.an <- C.star + (C_0 - C.star)*exp(-(D+k)*time.seq)

Plot solution

plot(time.seq, C.an, type="l", ylim=c(0,2), lwd =2, cex = 2,

xlab="time", ylab="state variable", main = "Analytical solution")

11.4. Time-dependent solution: Numerical approach

It is often difficult to find the analytic, or exact, solution to a differential equation. This
may be because the equation is non-linear or because it has parameters that vary with time.
Moreover, even for linear ODEs with constant parameters it can be useful to have a numerical
solution because the solution can be automated for many different inputs and/or initial con-
ditions. There are many methods for finding a numerical solution to differential equations.
These methods are referred to by a variety of different names: numerical methods, numerical
integration, approximate solution. In this section, we will introduce a basic method (the Euler
method). Afterwards, we will show how to use more sophisticated integration methods in R .

A first point to note is that numerical methods do not generate exact solutions, but only
approximate ones. Because these methods are based on computation, the output of a numer-
ical method approximates the solution to the differential equations (and they may provide an
extremely poor approximation when not used carefully). A second important point is that
numerical metods only calculate the solution at certain discrete time intervals. Typically, the
solution is calculated at the time t0 of the initial conditions, and subsequently, for every time
interval ∆t thereafter (i.e., at t = t0 + ∆t, t = t0 + 2∆t, ... , t = t0 + n∆t).

Euler integration

The simplest method of numerical integration is Euler’s method, which is presented now.

82 Scientific computing in R

Consider the generic dynamic model:

dC
dt = f (C, t)

C(t = t0) = C0

Starting at the initial time t0, we would like to calculate a new value for the state vari-
able C after the time interval ∆t. To this end, we can approximate the differential of the
concentration by its linear difference

dC
dt = limt→0

(
C(t+∆t)−C(t)

∆t

)
≈ C(t+∆t)−C(t)

∆t

If we re-arrange this formula, we can calculate an new approximate value C∗ at the time
t = t0 + ∆t as a function of what we know at the time t = t0

C∗ (t0 + ∆t) = C(t0) + ∆t ·
(
dC
dt

)
t=t0

Furthermore, as we now from the ODE in the model formulation, the derivative of C with
respect to the time t at t = t0 is given by the function value of f at t = t0

C∗ (t0 + ∆t) = C(t0) + ∆t · f (C0, t0)

This immediately suggests a sequential procedure for calculating the numerical solution of an
ODE. Using the previously computed approximation, we can get the approximation at the
next time step. The following sequential scheme illustrates this procedure:

C∗0 = C∗(t0) = C0

C∗1 = C∗ (t0 + ∆t) = C∗0 + ∆t · f (C∗0 , t0)

C∗2 = C∗ (t0 + 2∆t) = C∗1 + ∆t · f (C∗1 , t0 + ∆t)

...

This way, we obtain a sequence of numbers C∗1 , C∗2 , C∗3 , ..., C∗n that will approximate the
solution of the differential equation at t1 , t2 , t3, ..., tn. This sequential procedure is the basis
of the Euler integration method.

So, how do we implement the Euler Method in an R script? It is fairly simple. We first define
the integrator function f , which specifies the right-hand side of the ODEs. This function
is called model in the R script, and has a quite elaborate form. We introduce this specific
form here for later consistency with other integrator methods (but admittedly, for the Euler
method, it is a bit overcomplicated). The model function has three different arguments as
input: the actual time (t), the values of the state variables (state) and the values of the
parameters (parameters).

model <- function(t, state, parameters)

{

with (as.list(c(state, parameters)),

{

dC <- D*(C_in-C)-k*C

return (list(c(dC)))

Karline Soetaert and Filip Meysman 83

})

}

Subsequently we must specify the parameters and the initial conditions.

Parameters

parameters <- c(D=2,C_in=1,k=1)

Initial conditions

C_0 <- 2

As noted above, any numerical integration procedure calculates the solution only at specific
points in time. Therefore, we need to explicitly specify a vector that contains the different
times where an approximate solution should be calculated.

Step size and number of steps

time.seq <- seq(from = 0, to = 0.5, by = 0.1)

n <- length(time.seq)

Finally, the sequential time-stepping of the Euler procedure can be implemented as

C <- vector(length = length(time.seq))

dC_dt <- vector(length = length(time.seq))

C[1] <- C_0

for (i in 1:(n-1))

{

Model function call: Calculate the rate of change at the present time point

dC_dt[i] <- model(t=time.seq[i],state=c(C=C[i]),parameters)[[1]]

Calculate the time jump

Delta_t <- time.seq[i+1] - time.seq[i]

Integration step: Calculate the concentration at next time point

C[i+1] <- C[i] + Delta_t*dC_dt[i]

}

As you can see on the graph, the numerical solution slightly deviates from the exact analytical
solution. This is because we have used a rather large time interval ∆t = 0.2. If we would
make this time interval smaller, the numerical approximation would improve (see exercises).

11.5. Numerical solution: implementation

The Euler method only provides a very crude and basic approach to numerical integration.
There are more sophisticated integration methods available, which are contained within the

84 Scientific computing in R

0.0 0.1 0.2 0.3 0.4 0.5

0.
0

0.
5

1.
0

1.
5

2.
0

Euler integration

time

st
at

e
va

ria
bl

e

●

●

●

●

●

●

●

Analytical solution
Euler integration

Figure 14: Comparison of numerical solution via Euler method (points) with the analytical
solutions (line)

deSolve package (differential equations Solving). Here, we will illustrate the general proce-
dure for the time-dependent numerical solution of ODEs in R . As an example, consider the
following set of two differential equations:

dA
dt = r · (x−A)− k ·A ·B
dB
dt = r · (y −B) + k ·A ·B

In this, A and B are the state variables, while r, x, y and k are constant parameters.

The first step is to reformulate the model so that the right hand sides only features the
differentials (this is already done above). Then, we can define the integrator function (again
called model), which specifies the right-hand side of the ODEs. As noted before, this function
has three different arguments as input: the actual time (t), the values of the state variables
(state) and the values of the parameters (parameters).

model <- function(t, state, parameters)

{

with (as.list(c(state, parameters)),

{

dA <- r*(x-A) - k*A*B

dB <- r*(y-B) + k*A*B

return (list(c(dA, dB)))

})

}

The above function can be used as a blueprint. This function simply calculates the rate of
change of the state variables (dA and dB) and returns those as a list. The R-statement with

(as.list (c(state,parameters)), ensures that the state variables and parameters can be
addressed by their names.

Before we can actually solve this ODE model, we need to:

Karline Soetaert and Filip Meysman 85

� give values to the parameters (parameters):

� assign initial conditions to the state variables (state)

� generate a sequence of time values at which we want output (time.seq),

parameters <- c(x = 1, y = 0.1, k = 0.05, r = 0.05)

state <- c(A = 1, B = 1)

time.seq <- seq(from = 0, to = 300, by = 1)

The model can now be solved. To do so, we use the integration routine ode, which can be
found in R package deSolve. This package is loaded first.

require(deSolve)

Just like the Euler method did above, the routine ode will calculate an approximate value for
the state variables A and B at each time value specified in the vector time.seq. Accordingly,
the actual numerical solution of our ODE model is doen within the following single statement:

out <- ode(y=state,times=time.seq,func=model,parms=parameters)

The output is stored in a matrix, called out. All we need to do now is to plot this model
output. Before we do so, we can have a look at the output matrix out:

head(out)

time A B

[1,] 0 1.0000000 1.0000000

[2,] 1 0.9523189 1.0037869

[3,] 2 0.9090687 1.0052854

[4,] 3 0.8699226 1.0047151

[5,] 4 0.8345728 1.0022854

[6,] 5 0.8027203 0.9982009

The data are arranged in three columns: first the time stamp, then values of the state variables
A and B. We can extract the data using the column names (out[,"time"], out[,"A"],
out[,"B"]).

Before plotting the model output, the range of concentrations of substances A and B is
estimated. This is used to set the limits of the y-axis (ylim). The R -function plot creates a
new plot; lines adds a line to this plot; lty selects a line type; lwd=2 makes the lines twice
as thick as the default. Finally a legend is added.

ylim <- range(c(out[,"A"],out[,"A"]))

plot(out, which = "A", xlab = "time", ylab = "concentration",

lwd = 2, type = "l", ylim = ylim, main = "model")

lines(out[,"time"], out[,"B"], lwd = 2, lty = 2)

legend("topright", legend = c("A", "B"),lwd = 2, lty = c(1, 2))

86 Scientific computing in R

0 50 100 150 200 250 300

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

model

time

co
nc

en
tr

at
io

n

A
B

Figure 15: ode model - see text for R-code

11.6. Steady-state model solution

Of particular interest is the behaviour of dynamic models for very long times. There are four
possibilities for the long term behaviour of a dynamic model:

� The model eventually reaches a state where the state variables no longer change with
time. This is called a steady state.

� The model solution goes to infinity. It is said that the model solution diverges.

� The model solution eventually reaches a periodic regime, where the solution repeats
itself after a certain period.

� The model solution does not diverge, but also never tends to a periodic or staedy regime.
It keeps on going in a rather unpredictable fashion. This is called a chaotic solution.

Here, we will be mainly concerned with systems that reach a steady state. There are three
alternative ways to find this steady state.

Direct analytical calculation of steady-state

In the direct procedure, one takes advantage of the definition of the steady state. According
to its definition, the steady state is a particular state where the rate of change of all state
variables vanishes. As a result, we can set the dC/dt terms on the left hand side of the
differential equation to zero:

dC
dt = 0 = D · (Cin − C)− k · C

Because, we have removed the dC/dt terms, we arrive at an algebraic equation on the right
hand side (this equation no longer contains any differentials). By solving this algenraic equa-
tion, we find that the steady state concentration is given by:

C∗ = D
D+k · Cin

Karline Soetaert and Filip Meysman 87

One can verify in Figure (??) that this is indeed the long-term behaviour of the model. When
the time becomes large, the solution asymtotically approaches Cin.

Direct numerical calculation of steady-state

This is exactly the same procedure as above. One sets the dC/dt terms to zero to arrive at an
algebraic equation. However, sometimes this algebraic equation does not allow the analytical
calculation of the root. In this case, one can use a numerical root-solving procedure to
approaximately calculate the staedy state value to within some level of tolerance. See Chapter
9 on root finding.

Time dependent numerical calculation of steady state

Here we use another aspect of the steady state. As noted above, the model will eventually
reach the steady state when the model runs long enough. Accordingly, we can apply the
time-dependent numerical solution procedure as discussed above, and let it run for a long
time interval. Subsequently, we can check if the rate of change terms dC/dt are small enough.
If so, we have reached the steady state. If not, we need to prolong the integration interval,
and repeat the procedure (run the model and check for steady state).

11.7. Exercises

Exercise 01: Numerical integration

Find the numerical solution of following dynamic problems by adapting the blueprint script
for numerical integration with ode function.

Dynamic problem 1a:
dC
dt = −b · C + a

C(t = t0) = 0

Parameter values are a = 1 and b = 2. The integration period is 50 time units with output
every time unit.

Dynamic problem 1b:
dC
dt = f · exp(−d · t) · C2 − b ·

√
C + a

C(t = t0) = 0

Parameter values are a = 1, b = 0.2, d = 0.1 and f = 0.01. The integration period runs over
10 time units with output every 0.1 time unit. Afterwards perform a new simulation where
the intergration period is increased to 50 days (store the results in a new object called out2).
Plot both solutions side by side in a two panel plot.

Are the above problems linear, autonomous and/or homogeneous?

Exercise 02: Oxygen dynamics in a small pond

In a small pond, the oxygen concentration fluctuates daily by means of production during the
day (as a result of photosynthesis) and consumption at night (due to respiration). The daily
variation of the net oxygen production rate R (photosynthesis minus respiration) is given by:

R = R0 · sin
(
2π tτ

)

88 Scientific computing in R

The parameter R0 is 100 mmol m−3 d−1 and the fluctuation period τ is 1 day. The dynamics
of the oxygen in the pond is further described by the following model:

dC
dt = kd

L · (Catm − C) +R

C(t = t0) = C0

The parameter kd is the piston velocity (5 m d−1) which regulates the exchange with the
atmosphere, and L is the depth of the pond (1 m). The parameter Catm represents the
oxygen concentration that is in equilibrium with the atmosphere (250 mmol m−3). The
initial concentration of oxygen is 100 mmol m−3 The integration period runs over 10 days
with output every 0.1 day.

Find the numerical solution and make a plot (black line). Does the oxygen concentration
reach a steady state? Determine a second model solution with no net O2 production R0 = 0,
all other parameters being the same. Plot this solution in a blue line on the same graph.

Exercise 03: Logistic growth model

A realistic model of population growth is given by the logistic growth equation.

dP
dt = r

(
1− P

K

)
P

P (t = t0) = P0

In this, P0 is the initial population, r is the intrinsic growth rate (growth rate that will occur
in the absence of any limiting factors), and K is called the carrying capacity.

� Write a script file that solves the model numerically using the ode function. The pa-
rameter values are r = 0.5 and K = 10, while teh initial population size is P0 = 2.
Simulate the model over a time period of 10 time units.

� Does the model reach a steady state over this period? Check this by running the model
over a longer time period (e.g. 100 time units). What is the population size P after
such a long time?

� Determine the steady state solution using the direct analytical calculation of steady-
state. Is this the same as the population size P after 100 time units?

Exercise 04: Steady state calculations

Determine the steady state solutions of following ODEs.

dC
dt = 2 · (6− C)
dC
dt = 4− 2 · exp(C)
dC
dt = 7− 2 · ln(2C + 0.1)

Do this via the method of direct analytical calculation as well as the method of time dependent
numerical calculation. Check that both solutions are identical.

Exercise 05: Euler method Consider the following dynamic problem:

dC
dt = 2− 2 · C − exp(−4t)

C(t = t0) = 1

Karline Soetaert and Filip Meysman 89

This is a fairly simple linear differential equation, for which the analytical solution is given
by:

C(t) = 1 + 0.5exp(−4t)− 0.5exp(−2t)

Use the Euler Method with a step size of ∆t = 0.1 to find approximate values of the solution
at t = 0.1, 0.2, 0.3, 0.4, and 0.5. Compare them to the exact values of the analytical solution
at these points. Quantify the error between numerical and exact solution as:

ε = 100
(
Cnum−Can

Can

)
The maximum error in the approximations from this example is around 5%. This is not too
bad, but also not all the great of an approximation. This kind of error is generally unacceptable
in real applications however. So, how can we get better approximations? Try the same Euler
method, though now with a reduced time intervals of ∆t = 0.05 and ∆t = 0.01. Calculate
once more the relative error and summarize all information in one matrix table (time, exact,
Dt=0.1, Dt=0.05, Dt=0.01).

Exercise 06: Lotka-volterra model The Lotka-Volterra model is a famous model that either
describes predator-prey interactions or competitive interactions between two species. A.J.
Lotka and V. Volterra formulated the model almost simultaneously in the 1920’s ((Lotka
1925), (Volterra 1926)).

� Write a script file that solves the Lotka-Volterra model:

dx
dt = a · x · (1− x

K)− b · x · y
dy
dt = g · b · x · y − e · y

for initial values x=300,y=10 and parameter values: a=0.05, K=500, b=0.0002, g=0.8,
e=0.03

� Make three plots, one for x and one for y as a function of time, and one plot expressing
y as a function of x (this is called a phase-plane plot). Arrange these plots in 2 rows
and 2 columns.

� Now run the model with other initial values (x=200, y=50); add the (x,y) trajectories
to the phase-plane plot

Exercise 07: Butterfly The Lorenz equations (Lorenz 1963) represents the fisrt set of of differ-
ential equations in which chaotic behaviour was discovered. These three differential equations
represent an idealized model for the circulation of air within the atmosphere of the earth.

dx
dt = −8

3 · x+ y · z
dy
dt = −10 · (y − z)
dz
dt = −x · y + 28y − z

� It takes about 10 lines of R-code to generate the solutions and plot them.

� Function scatterplot3d from the package scatterplot3d generates 3-D scatterplots.
Can you recreate the following ”butterfly” ? Use as initial conditions x = y = z = 1;
create output for a time sequence ranging from 0 to 100, and with a time step of 0.005.

90 Scientific computing in R

0 20 40 60 80 100

0
10

20
30

40

x

time

0 20 40 60 80 100

−
10

0
10

20

y

time

0 20 40 60 80 100

−
20

0
10

z

time

Lorenz butterfly

 0 10 20 30 40 50−
30

−
20

−
10

 0
 1

0
20

 3
0

−20−10 0
 10 20

out[, "x"]

ou
t[,

 "
z"

]

Karline Soetaert and Filip Meysman 91

12. Final remarks

12.1. The questions

These lecture notes have been generated with LaTeX and making use of R package Sweave
(Leisch 2002), which allows to merge LaTeX with R-code.

12.2. The answers

The answers to the questions in this course are present as an R-vignette in package marelacTeach-
ing. From within R , type:

> vignette("Answers")

Or, you can find the file ”Answers.pdf” in the /inst/doc subdirectory of package marelacTeach-
ing.

12.3. If you use tinn-R and it does not automatically connect with R

You connect Tinn-R to the R console by navigating to Options, Main and Application. Go
to the R tab, and click the Path to your preferred Rgui button. Locate the Rgui.exe file
in the bin directory of your specific R installation.

If you have installed the latest tinn-R version, you need to change an input file to make
tinn-R communicate properly with R . Find the place where R has been installed (in the etc

subdirectory) and locate the file ”Rprofile.site”. Open this file in the tinn-R editor and add
the following:

.trPaths <- paste(paste(Sys.getenv('APPDATA'),'\\Tinn-R\\tmp\\', sep=''),

c('', 'search.txt', 'objects.txt', 'file.r', 'selection.r', 'block.r', 'lines.r'), sep='')

References

Caswell H (2001). Matrix population models: construction, analysis, and interpretation. Sin-
auer, Sunderland, second edition edition.

Hansen P, Bjornsen P, Hansen B (1997). “Zooplankton grazing and growth: Scaling within
the 2-2,000-mu m body size range.” Limnology and Oceanograpy, 42, 687–704.

Hofmann AF, Soetaert K, Middelburg JJ, Meysman FJR (2010). “AquaEnv - An Aquatic
Acid-Base Modelling Environment in R.” Aquatic Geochemistry, DOI 10.1007/s10498-
009-9084-1.

Kuhnert P, Venables W (2005). An introduction to R: software for statistical modelling &
computing. URL www.r-project.org.

etc
www.r-project.org

92 Scientific computing in R

Lavigne H, Gattuso JP, Epitalon JM, Gentili B, Hofmann A, Orr J, Proye A, Soetaert K
(2010). seacarb: Calculates parameters of the seawater carbonate system. R package version
2.3.2, URL http://CRAN.R-project.org/package=seacarb.

Leisch F (2002). “Sweave: Dynamic Generation of Statistical Reports Using Literate Data
Analysis.” In W Härdle, B Rönz (eds.), “Compstat 2002 - Proceedings in Computational
Statistics,” pp. 575–580. Physica Verlag, Heidelberg. ISBN 3-7908-1517-9, URL http:

//www.stat.uni-muenchen.de/~leisch/Sweave.

Ligges U, Machler M (2003). “Scatterplot3d - an R Package for Visualizing Multivariate
Data.” Journal of Statistical Software, 8(11), 1–20.

Lorenz E (1963). “Deterministic non-periodic flows.” J. Atmos. Sci, 20, 130–141.

Lotka AJ (1925). Elements of Physical Biology. Williams & Wilkins Co., Baltimore.

Millero F, Poisson A (1981). “International one-atmosphere equation of state for seawater.”
Deep-Sea Research, 28(6), 625–629.

R Development Core Team (2011). R: A Language and Environment for Statistical Computing.
R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http:

//www.R-project.org.

Soetaert K (2009). rootSolve: Nonlinear root finding, equilibrium and steady-state analysis of
ordinary differential equations. R package version 1.4.

Soetaert K, Heip C, Vincx M (1991). “Diversity of nematode assemblages along a mediter-
ranean deep-sea transect.” Marine Ecology Progress Series, 75, 275–282.

Soetaert K, Herman PMJ (2009). A Practical Guide to Ecological Modelling. Using R as a
Simulation Platform. Springer. ISBN 978-1-4020-8623-6.

Soetaert K, Meysman F (2009). marelacTeaching: Datasets and tutorials for use in the
MArine, Riverine, Estuarine, LAcustrine and Coastal sciences. R package version 1.1.

Soetaert K, Petzoldt T, Meysman F (2009). marelac: Constants, conversion factors, utilities
for the MArine, Riverine, Estuarine, LAcustrine and Coastal sciences. R package version
2.0.

Soetaert K, Petzoldt T, Setzer RW (2010). “Solving Differential Equations in R: Package
deSolve.” Journal of Statistical Software, 33(9), 1–25. ISSN 1548-7660. URL http://www.

jstatsoft.org/v33/i09.

Verhulst PF (1838). “Notice sur la loi que la population pursuit dans son accroissement.”
Correspondance mathematique et physique, 10, 113–121.

Volterra V (1926). “Variazioni e fluttuazioni del numero d’individui in specie animali con-
viventi.” Mem. R. Accad. Naz. dei Lincei. Ser. VI, 2, 31–113.

Zeebe R, Wolf-Gladrow D (2003). CO2 in Seawater: Equilibrium, kinetics, isotopes. Elsevier.

http://CRAN.R-project.org/package=seacarb
http://www.stat.uni-muenchen.de/~leisch/Sweave
http://www.stat.uni-muenchen.de/~leisch/Sweave
http://www.R-project.org
http://www.R-project.org
http://www.jstatsoft.org/v33/i09
http://www.jstatsoft.org/v33/i09

Karline Soetaert and Filip Meysman 93

Affiliation:

Karline Soetaert
Royal Netherlands Institute of Sea Research (NIOZ)
4401 NT Yerseke, Netherlands E-mail: karline.soetaert@nioz.nl
URL: http://www.nioz.nl

Filip Meysman
Royal Netherlands Institute of Sea Research (NIOZ)
4401 NT Yerseke, Netherlands
E-mail: filip.meysman@nioz.nl

mailto:karline.soetaert@nioz.nl
http://www.nioz.nl
mailto:filip.meysman@nioz.nl

	Getting started in R
	The R console
	The R editor
	Installing extension packages

	First steps into R programming
	Command line execution in the console
	Working with symbolic variables
	File management
	Objects and the workspace
	Working with scripts
	Errors and warnings
	Getting help
	A quick glance on things to come...

	Numbers and vectors
	Working with single numbers
	Exercises

	Creating a vector
	Other types of vectors
	Calculating with vectors
	Indexing and subsetting of vectors
	Logical vectors and conditions
	Removing elements
	Exercises

	Lists, data frames and data input/output
	Lists
	Data frames
	Data Conversion
	Data import from external sources
	Exercises
	A real world application: Diversity of deep-sea nematodes

	Functions and flow control
	Functions
	Control statements
	Repetitive execution: Loops
	Conditional execution: if, else, ifelse constructs

	Exercises.

	Statistics
	Using R in four steps
	Exercise: multivariate statistics on the nematode species data.

	Graphics
	X-Y plots
	X-Y plots; conditional plotting
	Zooplankton growth rates
	Images and contour plots
	Plotting a mathematical function
	Multiple figures
	Histograms, boxplots
	Exercises

	Matrix algebra
	Creating a matrix
	Arrays
	Dimensions
	Selecting and extracting elements
	Calculations with matrices
	Exercises
	Matrix algebra exercise 1
	Matrix algebra exercise 2
	Matrix algebra exercise 3
	System of linear equations

	Roots of functions
	The root-finding problem
	The bisection method
	Roots of one-dimensional functions: uniroot
	Multiple roots
	Roots in multi-dimensional problems
	A real world application: the pH of natural waters
	Exercises

	Interpolation, smoothing and curve fitting
	Interpolation and smoothing
	Curve fitting
	Exercises
	Smoothing
	Fitting

	Differential equations
	Dynamic models
	Model formulation in the natural sciences
	An example: Transformation of an organic pollutant in a lake

	Types of differential equations
	Autonomous versus non-autonomous differential equations
	Linear versus non-linear differential equations
	Ordinary versus partial differential equations

	Time-dependent solution: Analytical approach
	Time-dependent solution: Numerical approach
	Euler integration

	Numerical solution: implementation
	Steady-state model solution
	Direct analytical calculation of steady-state
	Direct numerical calculation of steady-state
	Time dependent numerical calculation of steady state

	Exercises

	Final remarks
	The questions
	The answers
	If you use tinn-R and it does not automatically connect with R

